Vol. 100
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-02-19
Logarithmic Similarity Measure Based Cooperative Spectrum Sensing Under Impulsive Noise
By
Progress In Electromagnetics Research C, Vol. 100, 45-57, 2020
Abstract
Spectrum sensing is one of the key functionalities in cognitive radios which enables opportunistic spectrum access. In this paper, a cooperative spectrum sensing (CSS) algorithm is developed to alleviate the problems of hidden terminals under impulsive noise environments. Firstly, the logarithmic similarity measure detector (LSMD) is constructed to solve the problem of outliers caused by impulsive noise. On the one hand, LSMD contains no free parameters, which is easy to implement. On the other hand, logarithmic similarity measure (LSM) converts logarithmic operations into multiplication operations, and then the computational cost can be greatly reduced. Moreover, original data fusion strategy is designed to reduce the amount of computation of CSS, while the accuracy of CSS is noticeably improved compared with the ``OR'' rule CSS. Besides, the solution of the unknown parameter of LSMD is directly given by theoretical analysis, and then the CSS exhibits higher efficiency. Simulation results show that the proposed method achieves much higher detection probability than the existing techniques under various scenarios.
Citation
Wenkai Zhang, Changqing Zhang, Gang An, and Jin Li, "Logarithmic Similarity Measure Based Cooperative Spectrum Sensing Under Impulsive Noise," Progress In Electromagnetics Research C, Vol. 100, 45-57, 2020.
doi:10.2528/PIERC19112301
References

1. Murtaza, N., R.-K. Sharma, R. S. Thoma, and M. A. Hein, "Directional antennas for cognitive radio: Analysis and design recommendations," Progress In Electromagnetics Research, Vol. 140, 1-30, 2013.
doi:10.2528/PIER13031107

2. Song, H., X. Fang, L. Yan, and Y. Fang, "Control/user plane decoupled architecture utilizing unlicensed bands in LTE systems," IEEE Trans. on Communications, Vol. 66, No. 1, 407-417, Jan. 2018.

3. Mariani, A., A. Giorgetti, and M. Chiani, "Effects of noise power estimation on energy detection for cognitive radio applications," IEEE Trans. on Communications, Vol. 59, No. 12, 3410-3420, Dec. 2011.
doi:10.1109/TCOMM.2011.102011.100708

4. Erdogmus, D., R. Agrawal, and J. C. Principe, "A mutual information extension to the matched filter," Signal Proc., Vol. 85, No. 5, 927-935, May 2005.
doi:10.1016/j.sigpro.2004.11.018

5. Orimoto, H. and A. Ikuta, "Signal processing for noise cancellation in actual electromagnetic environment," Progress In Electromagnetics Research, Vol. 99, 307-322, 2009.
doi:10.2528/PIER09100907

6. Liu, T., T. Qiu, and S. Luan, "Cyclic frequency estimation by compressed cyclic correntropy spectrum in impulsive noise," IEEE Signal Processing Letters, Vol. 26, No. 6, 888-892, 2019.
doi:10.1109/LSP.2019.2910928

7. Ma, J. and Y. Li, "Soft combination and detection for cooperative spectrum sensing in cognitive radio networks," Global Telecommun. Conf., GLOBECOM'07, 3139-3143, IEEE, Nov. 2007.

8. Margoosian, A., J. Abouei, and K. N. Plataniotis, "An accurate kernelized energy detection in gaussian and non-gaussian/impulsive noises," IEEE Transactions on Signal Processing, Vol. 63, No. 21, 5621-5636, 2015.
doi:10.1109/TSP.2015.2457400

9. Pokharel, P. P., R. Agrawal, and J. C. Principe, "Correntropy based matched filtering," Proc. IEEE Workshop Mach. Learning for Signal Proc., 341-346, Sep. 2005.

10. Lee, J. and J. C. Principe, "Correntropy-based spectrum sensing for wireless microphones in man-made noise environments," Proc. Int. Workshop on CIP, 1-6, May 2012.

11. Silverman, B., Density Estimation for Statistics and Data Analysis, Chapman and Hall, 1986.
doi:10.1007/978-1-4899-3324-9

12. Akyildiz, I., W. Lee, M. Vuran, and S. Mohanty, "Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey," Computer Netw., Vol. 50, No. 13, 2127-2159, Sep. 2006.
doi:10.1016/j.comnet.2006.05.001

13. Maleki, S., S. P. Chepuri, and G. Leus, "Optimization of hard fusion based spectrum sensing for energy-constrained cognitive radio networks," Phys. Commun., Vol. 9, 193-198, Dec. 2013.
doi:10.1016/j.phycom.2012.07.003

14. Ghorbel, M. B., H. Nam, and M. S. Alouini, "Soft cooperative spectrum sensing performance under imperfect and non identical reporting channels," IEEE Communications Letters, Vol. 19, No. 2, 227-230, 2015.
doi:10.1109/LCOMM.2014.2377231

15. Li, S., T. Qiu, and D. Zha, "Adaptive blind equalization for MIMO systems under α-stable noise environment," IEEE Communications Letters, Vol. 13, No. 8, 609-611, Aug. 2009.
doi:10.1109/LCOMM.2009.081982

16. Patel, A. and A. K. Jagannatham, "Non-antipodal signaling based robust detection for cooperative spectrum sensing in MIMO cognitive radio networks," IEEE Signal Processing Letters, Vol. 20, No. 7, 661-664, 2013.
doi:10.1109/LSP.2013.2261985

17. Schouten, T. E. and L. Van, "Fast exact euclidean distance (FEED): A new class of adaptable distance transforms," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 36, No. 11, 2159-2172, 2014.
doi:10.1109/TPAMI.2014.25

18. Margoosian, A., J. Abouei, and K. N. Plataniotis, "An accurate kernelized energy detection in gaussian and non-gaussian/impulsive noises," IEEE Transactions on Signal Processing, Vol. 63, No. 21, 5621-5636, 2015.
doi:10.1109/TSP.2015.2457400

19. Ji, Z. and H. Zhang, "Kernel recursive generalized maximum correntropy," IEEE Signal Processing Letters, Vol. 24, No. 12, 1832-1836, 2017.
doi:10.1109/LSP.2017.2761886

20. Hinton, G. E. and S. J. Nowlan, "The bootstrap Widrow-Hoff rule as a cluster-formation algorithm," Neural Comput., Vol. 2, No. 3, 355-362, 1990.
doi:10.1162/neco.1990.2.3.355

21. Serfling, R. J., Approximation Theorems of Mathematical Statistics, Wiley, 1980.
doi:10.1002/9780470316481

22. Mariani, A., A. Giorgetti, and M. Chiani, "Effects of noise power estimation on energy detection for cognitive radio applications," IEEE Trans. on Communications, Vol. 59, No. 12, 3410-3420, Dec. 2011.
doi:10.1109/TCOMM.2011.102011.100708

23. Cordeiro, C., K. Challapali, and D. Birru, "IEEE 802.22: An introduction to the first wireless standard based on cognitive radios," J. Commun., Vol. 1, No. 1, 38-47, Apr. 2006.
doi:10.4304/jcm.1.1.38-47

24. Liu, M., N. Zhao, J. Li, and V. Leung, "Spectrum sensing based on maximum generalized correntropy under symmetric alpha stable noise," IEEE Transactions on Vehicular Technology, Vol. 68, No. 10, 10262-10266, 2019, doi: 10.1109/TVT.2019.2931949.
doi:10.1109/TVT.2019.2931949