Vol. 100
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-02-18
High-Precision Inversion of Buried Depth Inurban Underground Iron Pipelines Based on AM-PSO Algorithmfor Magnetic Anomaly
By
Progress In Electromagnetics Research C, Vol. 100, 17-30, 2020
Abstract
Buried iron pipeline is an important part of urban infrastructure. In order to accurately obtain the location information of buried iron pipeline, here, we establish a forward model of magnetic anomaly in buried iron pipeline based on magnetic dipole reconstruction (MDR) method that determine four inversion parameters and two inversion objective functions. The vertical magnetic field data with different proportion noises are taken as observation values respectively to invert the parameters of underground pipeline and its location (buried depth) by using the adaptive mutation particle swarm optimization (AM-PSO) inversion algorithm. The errors of inversion and observation of vertical magnetic field are compared by substituting the inversion parameters into forward formulas. The results show that the AM-PSO inversion algorithm can accurately invert the pipeline depth, and the inversion error of the pipeline depth is less than 5%, which is acceptable in practical engineering. The inversion of the vertical magnetic field can basically coincide with the observed vertical magnetic field of the original model. At the same time, it is verified that the AM-PSO inversion algorithm is insensitive to magnetic anomaly noise data. In this study, the effectiveness of AM-PSO inversion algorithm method for pipeline depth inversion is analyzed, and an effective optimization inversion method is provided for underground iron pipeline depth inversion.
Citation
Pan Wu, and Zhiyong Guo, "High-Precision Inversion of Buried Depth Inurban Underground Iron Pipelines Based on AM-PSO Algorithmfor Magnetic Anomaly," Progress In Electromagnetics Research C, Vol. 100, 17-30, 2020.
doi:10.2528/PIERC19110701
References

1. McConnell, T. J., B. Lo, A. Ryder-Turner, and J. A. Musser, "Enhanced 3D seismic surveys using a new airborne pipeline mapping system," SEG Technical Program Expanded Abstracts, 516-519, 1999.

2. Allred, B. J. and J. D. Redman, "Location of agricultural drainage pipes and assessment of agricultural drainage pipe conditions using ground penetrating radar," Journal of Environmental and Engineering Geophysics, Vol. 15, No. 3, 119-134, 2010.
doi:10.2113/JEEG15.3.119

3. McGrath, P. H. and P. J. Hood, "An automatic least-squares multimodel method for magnetic interpretation," Geophysics, Vol. 38, No. 2, 349-358, 1973.
doi:10.1190/1.1440345

4. Salem, A. and D. Ravat, "A combined analytic signal and Euler method (AN-EUL) for automatic interpretation of magnetic data," Geophysics, Vol. 68, No. 6, 1952-1961, 2003.
doi:10.1190/1.1635049

5. Salem, A. and R. Smith, "Depth and structural index from normalized local wavenumber of 2D magnetic anomalies," Geophysical Prospecting, Vol. 53, No. 1, 83-89, 2005.
doi:10.1111/j.1365-2478.2005.00435.x

6. Abdelrahman, E. M. and K. S. Essa, "A new method for depth and shape determinations from magnetic data," Pure and Applied Geophysics, Vol. 172, No. 2, 439-460, 2015.
doi:10.1007/s00024-014-0885-9

7. Tlas, M. and J. Asfahani, "The simplex algorithm for best-estimate of magnetic parameters related to simple geometric-shaped structures," Mathematical Geosciences, Vol. 47, No. 3, 301-316, 2015.
doi:10.1007/s11004-014-9549-7

8. Gokturkler, G. and C. Balkaya, "Inversion of self-potential anomalies caused by simple-geometry bodies using global optimization algorithms," Journal of Geophysics and Engineering, Vol. 9, No. 5, 498-507, 2012.
doi:10.1088/1742-2132/9/5/498

9. Biswas, A., "Interpretation of gravity and magnetic anomaly over thin sheet-type structure using very fast simulated annealing global optimization technique," Modeling Earth Systems and Environment, Vol. 2, No. 1, 30, 2016.
doi:10.1007/s40808-016-0082-1

10. Ekinci, Y. L., "MATLAB-based algorithm to estimate depths of isolated thin dike-like sources using higher-order horizontal derivatives of magnetic anomalies," Springer Plus, Vol. 5, No. 1, 1384, 2016.
doi:10.1186/s40064-016-3030-7

11. Guo, Z. Y., D. J. Liu, Q. Pan, Y. Y. Zhang, Y. Li, and Z. Wang, "Vertical magnetic field and its analytic signal applicability in oil field underground pipeline detection," Journal of Geophysics and Engineering, Vol. 12, No. 3, 340-350, 2015.
doi:10.1088/1742-2132/12/3/340

12. Feng, S., D. Liu, X. Cheng, H. Fang, and C. Li, "A new segmentation strategy for processing magnetic anomaly detection data of shallow depth ferromagnetic pipeline," Journal of Applied Geophysics, Vol. 139, 65-72, 2017.
doi:10.1016/j.jappgeo.2017.02.009

13. Zhu, H., D. Liu, S. Feng, Q. Pan, and J. Yan, "Magnetic dipole reconstruction geometry modeling for underground ferromagnetic pipe magnetic abnormal detection," Computer Measurement and Control, Vol. 25, No. 3, 201, 2017.

14. Biswas, A., M. P. Parija, and S. Kumar, "Global nonlinear optimization for the interpretation of source parameters from total gradient of gravity and magnetic anomalies caused by thin dyke," Annals of Geophysics, Vol. 60, No. 2, 0218, 2017.
doi:10.4401/ag-7129

15. Guo, Z., D. Liu, Q. Pan, and Y. Y. Zhang, "Forward modeling of total magnetic anomaly over a pseudo-2D underground ferromagnetic pipeline," Journal of Applied Geophysics, Vol. 113, 14-30, 2015.
doi:10.1016/j.jappgeo.2014.12.011

16. Wang, F., Y. Song, L. Dong, C. Tao, and X. Lin, "Magnetic anomalies of submarine pipeline based on theoretical calculation and actual measurement," IEEE Transactions on Magnetics, Vol. 55, No. 4, 1-10, 2019.
doi:10.1109/TMAG.2019.2898951

17. Finlay, C. C., et al., "International geomagnetic reference field: The eleventh generation," Geophysical Journal International, Vol. 183, No. 3, 1216-1230, 2010.
doi:10.1111/j.1365-246X.2010.04804.x

18. Liu, D. G., et al., "Adaptive cancellation of geomagnetic background noise for magnetic anomaly detection using coherence," Measurement Science and Technology, Vol. 26, No. 1, 015008, 2014.
doi:10.1088/0957-0233/26/1/015008

19. Sen, M. K. and P. L. Stoffa, Global Optimization Methods in Geophysical Inversion, Cambridge University Press, 2013.
doi:10.1017/CBO9780511997570

20. Singh, B., "Simultaneous computation of gravity and magnetic anomalies resulting from a 2-D object," Geophysics, Vol. 67, No. 3, 801-806, 2002.
doi:10.1190/1.1484524

21. Eberhart, R. and J. Kennedy, "Particle swarm optimization," Proceedings of the IEEE International Conference on Neural Networks, Vol. 4, 1942-1948, 1995.

22. Kennedy, J., "Particle swarm optimization," Encyclopedia of Machine Learning, 760-766, 2010.

23. Merchaoui, M., A. Sakly, and M. F. Mimouni, "Particle swarm optimisation with adaptive mutation strategy for photovoltaic solar cell/module parameter extraction," Energy Conversion and Management, Vol. 175, 151-163, 2018.
doi:10.1016/j.enconman.2018.08.081

24. Liang, H. and F. Kang, "Adaptive mutation particle swarm algorithm with dynamic nonlinear changed inertia weight," Optik, Vol. 127, No. 19, 8036-8042, 2016.
doi:10.1016/j.ijleo.2016.06.002

25. Wang, H., W. Wang, and Z. Wu, "Particle swarm optimization with adaptive mutation for multimodal optimization," Applied Mathematics and Computation, Vol. 221, 296-305, 2013.
doi:10.1016/j.amc.2013.06.074

26. Mohurd Technical Specification for Urban Underground Pipeline Detection and Survey, China Building Industry Press, 2017.

27. Aleardi, M., A. Tognarelli, and A. Mazzotti, "Characterisation of shallow marine sediments using high-resolution velocity analysis and genetic-algorithm-driven 1D elastic full-waveform inversion," Near Surface Geophysics, Vol. 14, No. 5, 449-460, 2016.
doi:10.3997/1873-0604.2016030