Vol. 98
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-12-31
Retrieval of Tropical Peatland Forest Biomass from Polarimetric Features in Central Kalimantan, Indonesia
By
Progress In Electromagnetics Research C, Vol. 98, 109-125, 2020
Abstract
In this research, the potential of L-band SAR data is evaluated for tropical peatland forest biomass estimation using polarimetric features and field data. For this, ALOS-2 full polarimetric data are acquired over central Kalimantan, Indonesia. Total 54 sampled plots (20 m x 20 m) were established in the study site; diameter at breast height (DBH) and tree species of every tree were collected in each plot. Locally developed allometric equations were used to convert field data to biomass and plot level biomass, and the upscaling factor was applied to upscale plot level biomass to standard tones per hectare scale. Backscattering coefficient (σo) was computed for HH, HV, VH and VV polarization. Similarly, eigen decomposition was performed to extract: entropy (E), alpha (α), and anisotropy (A); also diversity indices were computed. Yamaguchi decomposition was performed to extract scattering behavior of forest in central Kalimantan. All polarimetric parameters were upscaled to one-hectare scale. Field data were divided into training plots (70 percent → 42 plots) and validation plots (30 percent → 12 plots). Nonlinear regression analysis was performed between polarimetric parameters and training plots. Perplexity, Shannon index, entropy, Gini Simpson index, index of qualitative inversion, Reyni entropy (order 2), σHV, alpha, σVV, and volumetric scattering component were found significantly correlated (ranging R2 from 0.67 to 0.49) with the field data. The corresponding nonlinear model was inverted, and biomass maps were computed for the individual model. The resultant biomass maps were validated using validation set of referenced measurements. Perplexity, Shannon index, entropy, Gini Simpson index, index of qualitative inversion, Reyni entropy (order 2), σHV, alpha, σVV and volumetric scattering exhibited a significant correlation between field biomass and predicted biomass computed using developed model. R2 for validation ranges from 0.95 to 0.81 with RMSE ranging from 13.59 Mgha-1 to 25.63 Mgha-1. The estimated biomass in study site ranges from 49.31 Mgha-1 to 290.60 Mgha-1.
Citation
Mirza Muhammad Waqar, Rahmi Sukmawati, Ya Qi Ji, Josaphat Tetuko Sri Sumantyo, Hendrik Segah, and Lilik Budi Prasetyo, "Retrieval of Tropical Peatland Forest Biomass from Polarimetric Features in Central Kalimantan, Indonesia," Progress In Electromagnetics Research C, Vol. 98, 109-125, 2020.
doi:10.2528/PIERC19082804
References

1. Cannell, M. G., World Forest Biomass and Primary Production Data, Academic Press, London, 1982.

2. Zhu, X. and D. Liu, "Improving forest aboveground biomass estimation using seasonal landsat NDVI time-series," ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 102, 222-231, 2015.
doi:10.1016/j.isprsjprs.2014.08.014

3. Zhao, P., D. Lu, G. Wang, et al. "Examining spectral reflectance saturation in landsat imagery and corresponding solutions to improve forest aboveground biomass estimation," Remote Sensing, Vol. 8, No. 6, 469, 2016.
doi:10.3390/rs8060469

4. Karlson, M., M. Ostwald, H. Reese, et al. "Mapping tree canopy cover and aboveground biomass in Sudano-Sahelian woodlands using landsat 8 and random forest," Remote Sensing, Vol. 7, No. 8, 10017-10041, 2015.
doi:10.3390/rs70810017

5. Mutanga, O., E. Adam, and M. A. Cho, "High density biomass estimation for wetland vegetation using worldview-2 imagery and random forest regression algorithm," International Journal of Applied Earth Observation and Geoinformation, Vol. 18, 399-406, 2012.
doi:10.1016/j.jag.2012.03.012

6. Mitchard, E. T., S. S. Saatchi, I. H. Woodhouse, et al. "Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes," Geophysical Research Letters, Vol. 36, No. 23, 2009.
doi:10.1029/2009GL040692

7. Qazi, W. A., S. Baig, H. Gilani, et al. "Comparison of forest aboveground biomass estimates from passive and active remote sensing sensors over Kayar Khola watershed, Chitwan district, Nepal," Journal of Applied Remote Sensing, Vol. 11, No. 2, 026038, 2017.
doi:10.1117/1.JRS.11.026038

8. Baig, S., W. Qazi, A. M. Akhtar, et al. "Above ground biomass estimation of Dalbergia sissoo forest plantation from dual-polarized ALOS-2 PALSAR data," Canadian Journal of Remote Sensing, 2017, doi: 10.1080/07038992.2017.1330143.

9. Neumann, M., S. S. Saatchi, L. M. Ulander, et al. "Assessing performance of L- and P-band polarimetric interferometric SAR data in estimating boreal forest above-ground biomass," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 3, 714-726, 2012.
doi:10.1109/TGRS.2011.2176133

10. Drake, J. B., R. G. Knox, R. O. Dubayah, et al. "Above-ground biomass estimation in closed canopy neotropical forests using lidar remote sensing: Factors affecting the generality of relationships," Global Ecology and Biogeography, Vol. 12, No. 2, 147-159, 2003.
doi:10.1046/j.1466-822X.2003.00010.x

11. Urbazaev, M., C. Thiel, F. Cremer, et al. "Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne lidar, and SAR and optical satellite data in Mexico," Carbon Balance and Management, Vol. 13, No. 1, 5, 2018.
doi:10.1186/s13021-018-0093-5

12. Shao, Z. and L. Zhang, "Estimating forest aboveground biomass by combining optical and SAR data: A case study in Genhe, Inner Mongolia, China," Sensors, Vol. 16, No. 6, 834, 2016.
doi:10.3390/s16060834

13. Yamaguchi, Y., T. Moriyama, M. Ishido, et al. "Four-component scattering model for polarimetric SAR image decomposition," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 8, 1699-1706, 2005.
doi:10.1109/TGRS.2005.852084

14. Cloude, S. R. and E. Pottier, "A review of target decomposition theorems in radar polarimetry," IEEE Transactions on Geoscience and Remote Sensing, Vol. 34, No. 2, 498-518, 1996.
doi:10.1109/36.485127

15. Shimada, M., O. Isoguchi, T. Tadono, et al. "Palsar radiometric and geometric calibration," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 12, 3915-3932, 2009.
doi:10.1109/TGRS.2009.2023909

16. Shimada, M., M. Watanabe, T. Moriyama, et al. "Palsar radiometric and geometric calibration," Journal of the Remote Sensing Society of Japan, Vol. 27, No. 4, 308-328, 2007.

17. Motohka, T., O. Isoguchi, M. Sakashita, et al. "Results of ALOS-2 PALSAR-2 calibration and validation after 3 years of operation," IGARSS 2018 --- 2018 IEEE International Geoscience and Remote Sensing Symposium, 4169-4170, IEEE, 2018.
doi:10.1109/IGARSS.2018.8519118

18. Takahashi, H., "Estimation of ground water level in a peat swamp forest as an index of peat/forest fire," Proceedings of the International Symposium on Land Management and Biodiversity in Southeast Asia, Bali, Indonesia, September 2002.

19. Tawaraya, K., Y. Takaya, M. Turjaman, et al. "Arbuscular mycorrhizal colonization of tree species grown in peat swamp forests of central Kalimantan, Indonesia," Forest Ecology and management, Vol. 182, No. 1-3, 381-386, 2003.
doi:10.1016/S0378-1127(03)00086-0

20. Page, S. E., R. Wust, D. Weiss, et al. "A record of late pleistocene and holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): Implications for past, present and future carbon dynamics," Journal of Quaternary Science, Vol. 19, No. 7, 625-635, 2004.
doi:10.1002/jqs.884

21. Tuah, S. J., Y. M. Jamal, and S. H. Limin, "Nutritional characteristics in leaves of plants native to tropical peat swamps and heath forests of central Kalimantan, Indonesia," Tropics, Vol. 12, No. 3, 221-245, 2003.
doi:10.3759/tropics.12.221

22. Segah, H., H. Tani, and T. Hirano, "Detection of fire impact and vegetation recovery over tropical peat swamp forest by satellite data and ground-based NDVI instrument," International Journal of Remote Sensing, Vol. 31, No. 20, 5297-5314, 2010.
doi:10.1080/01431160903302981

23. Miyamoto, K., J. S. Rahajoe, T. Kohyama, et al. "Forest structure and primary productivity in a bornean health forest," Biotropica, Vol. 39, No. 1, 35-42, 2007.
doi:10.1111/j.1744-7429.2006.00231.x

24. Anggraeni, B. W. and I. R. H. Purwanto, "Model pendugaan cadangan biomassa dan karbon hutan tropis basah di PT Sari Bumi Kusuma, Kalimantan Tengah,", PhD thesis, Universitas Gadjah Mada, 2011.

25. Jaya, A., U. J. Siregar, H. Daryono, et al. "Biomasa hutan rawa gambut tropika pada berbagai kondisi penutupan lahan," Jurnal Penelitian Hutan dan Konservasi Alam, Vol. 4, No. 4, 341-352, 2007.
doi:10.20886/jphka.2007.4.4.341-352

26. Basuki, T., P. Van Laake, A. Skidmore, et al. "Allometric equations for estimating the above-ground biomass in tropical lowland dipterocarp forests," Forest Ecology and Management, Vol. 257, No. 8, 1684-1694, 2009.
doi:10.1016/j.foreco.2009.01.027

27. Pearson, T., S. Walker, and S. Brown, "Sourcebook for land use, land-use change and forestry projects,", World Bank, Washington, DC, 2013.

28. Brown, S., Estimating Biomass and Biomass Change of Tropical Forests: A Primer, Vol. 134, Food & Agriculture Org., 1997.

29. Mitchard, E. T., S. S. Saatchi, I. H. Woodhouse, et al. "Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationp across four different African landscape," Geophysical Research Letters, Vol. 36, No. 23, 2009.
doi:10.1029/2009GL040692

30. He, F. and X.-S. Hu, "Hubbell’s fundamental biodiversity parameter and the simpson diversity index," Ecology Letters, Vol. 8, No. 4, 386-390, 2005.
doi:10.1111/j.1461-0248.2005.00729.x

31. Antropov, O., Y. Rauste, T. Häme, et al. "Polarimetric alos palsar time series in mapping biomass of boreal forests," Remote Sensing, Vol. 9, No. 10, 999, 2017.
doi:10.3390/rs9100999

32. Cougo, M. F., P. W. Souza-Filho, A. Q. Silva, et al. "Radarsat-2 backscattering for the modeling of biophysical parameters of regenerating mangrove forests," Remote Sensing, Vol. 7, No. 12, 17097-17112, 2015.
doi:10.3390/rs71215873

33. Vaglio Laurin, G., F. Pirotti, M. Callegari, et al. "Potential of ALOS2 and NDVI to estimate forest above-ground biomass, and comparison with lidar-derived estimates," Remote Sensing, Vol. 9, No. 1, 18, 2017.
doi:10.3390/rs9010018

34. Morel, A. C., S. S. Saatchi, Y. Malhi, et al. "Estimating aboveground biomass in forest and oil palm plantation in Sabah, Malaysian Borneo using ALOS PALSAR data," Forest Ecology and Management, Vol. 262, No. 9, 1786-1798, 2011.
doi:10.1016/j.foreco.2011.07.008

35. Kronseder, K., U. Ballhorn, V. B¨ohm, et al. "Above ground biomass estimation across forest types at different degradation levels in central Kalimantan using lidar data," International Journal of Applied Earth Observation and Geoinformation, Vol. 18, 37-48, 2012.
doi:10.1016/j.jag.2012.01.010

36. Englhart, S., J. Franke, V. Keuck, et al. "Aboveground biomass estimation of tropical peat swamp forests using SAR and optical data," 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 6577-6580, IEEE, 2012.
doi:10.1109/IGARSS.2012.6352092

37. Wagner, W., A. Luckman, J. Vietmeier, et al. "Large-scale mapping of boreal forest in SIBERIA using ERS tandem coherence and JERS backscatter data," Remote Sensing of Environment, Vol. 85, No. 2, 125-144, 2003.
doi:10.1016/S0034-4257(02)00198-0

38. Lucas, R., J. Armston, R. Fairfax, et al. "An evaluation of the ALOS PALSAR L-band backscatter --- Above ground biomass relationship Queensland, Australia: Impacts of surface moisture condition and vegetation structure," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 3, No. 4, 576-593, 2010.
doi:10.1109/JSTARS.2010.2086436

39. Englhart, S., V. Keuck, and F. Siegert, "Aboveground biomass retrieval in tropical forests --- The potential of combined X- and L-band SAR data use," Remote Sensing of Environment, Vol. 115, No. 5, 1260-1271, 2011.
doi:10.1016/j.rse.2011.01.008

40. Imhoff, M. L., "Radar backscatter/biomass saturation: Observations and implications for global biomass assessment," Proceedings of IGARSS’93, IEEE International Geoscience and Remote Sensing Symposium, 43-45, IEEE, 1993.
doi:10.1109/IGARSS.1993.322465

41. Carreiras, J. M., M. J. Vasconcelos, and R. M. Lucas, "Understanding the relationship between aboveground biomass and ALOS PALSAR data in the forests of Guinea-Bissau (West Africa)," Remote Sensing of Environment, Vol. 121, 426-442, 2012.
doi:10.1016/j.rse.2012.02.012

42. Næsset, E., "Airborne laser scanning as a method in operational forest inventory: Status of accuracy assessments accomplished in Scandinavia," Scandinavian Journal of Forest Research, Vol. 22, No. 5, 433-442, 2007.
doi:10.1080/02827580701672147

43. Dobson, M. C., F. T. Ulaby, T. LeToan, et al. "Dependence of radar backscatter on coniferous forest biomass," IEEE Transactions on Geoscience and remote Sensing, Vol. 30, No. 2, 412-415, 1992.
doi:10.1109/36.134090

44. Le Toan, T., S. Quegan, M. Davidson, et al. "The biomass mission: Mapping global forest biomass to better understand the terrestrial carbon cycle," Remote Sensing of Environment, Vol. 115, No. 11, 2850-2860, 2011.
doi:10.1016/j.rse.2011.03.020

45. Van Con, T., N. T. Thang, C. C. Khiem, et al. "Relationship between aboveground biomass and measures of structure and species diversity in tropical forests of Vietnam," Forest Ecology and Management,, Vol. 310, 213-218, 2013.
doi:10.1016/j.foreco.2013.08.034

46. Li, S., J. Su, X. Lang, et al. "Positive relationship between species richness and aboveground biomass across forest strata in a primary Pinus kesiya forest," Scientific Reports, Vol. 8, No. 1, 2227, 2018.
doi:10.1038/s41598-018-20165-y

47. Dossa, G. G., E. Paudel, J. Fujinuma, et al. "Factors determining forest diversity and biomass on a tropical volcano, Mount Rinjani, Lombok, Indonesia," PloS One, Vol. 8, No. 7, 67720, 2013.
doi:10.1371/journal.pone.0067720

48. Li, S., X. Lang, W. Liu, et al. "The relationship between species richness and aboveground biomass in a primary Pinus kesiya forest of Yunnan, Southwestern China," PloS One, Vol. 13, No. 1, 0191140, 2018.

49. Day, M., C. Baldauf, E. Rutishauser, et al. "Relationships between tree species diversity and above-ground biomass in central African rainforests: Implications for REDD," Environmental Conservation, Vol. 41, No. 1, 64-72, 2014.
doi:10.1017/S0376892913000295

50. Lucas, R., J. Armston, R. Fairfax, et al. "An evaluation of the alos palsar L-band backscatter --- above ground biomass relationship queensland, australia: Impacts of surface moisture condition and vegetation structure," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 3, No. 4, 576-593, 2010.
doi:10.1109/JSTARS.2010.2086436

51. Miyamoto, K., J. S. Rahajoe, T. Kohyama, et al. "Forest structure and primary productivity in a bornean heath forest," Biotropica, Vol. 39, No. 1, 35-42, 2007.
doi:10.1111/j.1744-7429.2006.00231.x

52. Chave, J., M. Réjou-Méchain, A. Búrquez, et al. "Improved allometric models to estimate the aboveground biomass of tropical trees," Global Change Biology, Vol. 20, No. 10, 3177-3190, 2014.
doi:10.1111/gcb.12629