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Abstract—In this research, the potential of L-band SAR data is evaluated for tropical peatland forest
biomass estimation using polarimetric features and field data. For this, ALOS-2 full polarimetric data
are acquired over central Kalimantan, Indonesia. Total 54 sampled plots (20m×20m) were established
in the study site; diameter at breast height (DBH) and tree species of every tree were collected in
each plot. Locally developed allometric equations were used to convert field data to biomass and plot
level biomass, and the upscaling factor was applied to upscale plot level biomass to standard tones per
hectare scale. Backscattering coefficient (σo) was computed for HH,HV, V H and V V polarization.
Similarly, eigen decomposition was performed to extract: entropy (E), alpha (α), and anisotropy (A);
also diversity indices were computed. Yamaguchi decomposition was performed to extract scattering
behavior of forest in central Kalimantan. All polarimetric parameters were upscaled to one-hectare
scale. Field data were divided into training plots (70 percent → 42 plots) and validation plots (30
percent → 12 plots). Nonlinear regression analysis was performed between polarimetric parameters and
training plots. Perplexity, Shannon index, entropy, Gini Simpson index, index of qualitative inversion,
Reyni entropy (order 2), σHV , alpha, σV V , and volumetric scattering component were found significantly
correlated (ranging R2 from 0.67 to 0.49) with the field data. The corresponding nonlinear model was
inverted, and biomass maps were computed for the individual model. The resultant biomass maps
were validated using a validation set of referenced measurements. Perplexity, Shannon index, entropy,
Gini Simpson index, index of qualitative inversion, Reyni entropy (order 2), σHV , alpha, σV V , and
volumetric scattering exhibited a significant correlation between field biomass and predicted biomass
computed using developed model. R2 for validation ranges from 0.95 to 0.81 with RMSE ranging from
13.59 Mgha−1 to 25.63 Mgha−1. The estimated biomass in study site ranges from 49.31 Mgha−1 to
290.60 Mgha−1.

1. INTRODUCTION

Tropical forest is playing an important role in carbon balancing by removing CO2 from the atmosphere
by the process of photosynthesis and storing it in terms of forest biomass. This carbon can return to
the atmosphere by forest burning, degradation, and deforestation. Hence, it is important to estimate
forest biomass at the regional scale to understand the carbon cycle over that area. Tropical forest
is the most significant terrestrial reservoir for carbon. The Indonesian rain forest is home to 10–15
percent of the world’s known plants, mammals, and birds. Due to commercial activities, forest burning,
deforestation, and degradation, Indonesia has lost 72 percent of its intact forest. The forest cover in
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Kalimantan, Indonesia is 25.5 million hectares (estimated in 2010). It is essential to determine the
current biomass status of forest in Kalimantan to understand regional carbon cycle in a better way.
Previously, traditional techniques were used for forest inventory and biomass estimation; this required
extensive field work with substantial human resources in the field, and for developing countries, such
practices are not sustainable. Recently, remote sensing is being used extensively for forest studies.
However, incorporating forest biophysical parameters collected in the field oversampled area increases
the accuracy of forest parameter estimation using remote sensing dataset. As tropical regions are mostly
covered with clouds, the application of optical remote sensing data is limited over the tropical area.
However, synthetic aperture radar (SAR) exhibits excellent potential for forest biophysical parameters
estimation over tropical region due to its penetration capability through clouds.

Among other terrestrial carbon pools, forests store CO2 in its roots, stems, branches, and leaves
which are collectively known as forest biomass [1]. Forest biomass is categorized into two categories: 1)
above ground biomass (AGB) and 2) below ground biomass (BGB). Using remote sensing techniques,
AGB can be estimated effectively. The canopy AGB can be calculated using optical remote sensing
because it only gives information of canopy structure, and lidar data give information of vertical forest
profile; however, synthetic aperture radar (SAR) provides information of leaves, branches, stems, and soil
depending upon wavelength used for SAR imaging. As X-band mostly interacts with leaves and small
branches, C-band can penetrate through leaves and main branches, L-band can penetrate through stem
of tree and P-band can penetrate through soil cover. This penetration also depends upon the amount of
moisture and dielectric constant. However, the estimation of aboveground biomass using remote sensing
dataset requires extensive field-based referenced biomass measurements to develop the model between
parameters extracted from satellite data and reference biomass measurements.

Researchers attempted to estimate forest AGB using optical, lidar, and SAR datasets. Each of
them has potential to estimate different properties of forest structure. Many researchers have used
vegetation indices extracted from Landsat to estimate aboveground biomass [2–4], but the key problem
is saturation over very low biomass. Mutanga et al. used high resolution worldview-2 dataset for forest
biomass estimation using regression analysis between ground data and parameters extracted using high
resolution data [5]. Drake et al. used lidar data to map vertical structure and related it with forest
biomass [10]. SAR backscattering is also effectively used for forest biomass estimation [6–9].

Urbazaev et al. (2018) and Shao and Zhang (2016) estimated aboveground biomass by
developing synergy between field measurements and parameters extracted from SAR, lidar, and optical
datset [11, 12]. However, AGB estimation using SAR is limited due to SAR signal saturation at
certain biomass threshold. The sensitivity of L-band SAR backscatter to AGB saturates at around
100–150 Mgha−1 [6, 37]. However, some researchers find saturation values of more than 250 Mgha−1

for L-band [50], to 300 Mgha−1 when using multi-frequency SAR datasets such as C- and X-bands [39].
However, there is no current satellite sensor in orbit that provides biomass estimation over tropical forest
(> 400 Mgha−1) with reasonable accuracy [6, 38, 40–43]. A P-band SAR such as a planned BIOMASS
mission is needed to retrieve very high AGB [44]. It is also identified that slope is the dominant factor
that affects the accuracy of above ground biomass estimation [10].

The main goal of this research is to estimate aboveground biomass in tropical peatland forest using
backscatter, polarimetric parameters, and diversity indices.

1.1. Novel Contribution

Recently, many researchers have found that forest diversity is positively linked with aboveground
biomass [45–49]. However, the quantitative relationship between AGB and structure — species diversity
is poorly understood. The research presented in this paper has made the following contributions to the
state of art:

(i) Diversity indices are exploited to link with forest aboveground biomass.
(ii) Polarimetric parameters are used in synergy with field data for accurate estimation of forest

aboveground biomass.
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2. MAIN POLSAR CONCEPTS IN THE CONTEXT OF THIS STUDY

Fully polarimetric SAR measurements can be represented by scattering matrix shown in the equation
below:

[S] =
[
SHH SHV

SV H SV V

]
(1)

where Sxy is the complex backscattering term associated with x and y being the transmitted and received
polarizations, respectively. Equation (1) can be rewritten in Pauli basis:

�k =
1√
2

[SHH + SV V SHH − SV V 2SHV ]T (2)

In space-born SAR polarimetry, after polarimetric calibration, Faraday rotation compensation needs to
be applied by rotating it an angle θ around the radar line of sight leading to:

S′ =
[

cos θ sin θ
− sin θ cos θ

] [
SHH SHV

SV H SV V

] [
cos θ − sin θ
sin θ cos θ

]
(3)

where

S′ =
[
Shh Shv

Svh Svv

]
(4)

The corresponding covariance matrix is positive semi-definite Hermittian:

[C3] =

⎡
⎢⎣

〈ShhS∗
hh〉

〈√
2ShhS∗

hv

〉 〈ShhS∗
hv〉〈√

2ShvS
∗
hh

〉 〈2ShvS
∗
hv〉

〈√
2ShvS

∗
vv

〉
〈SvvS

∗
hh〉

〈√
2SvvS

∗
hv

〉 〈SvvS
∗
vv〉

⎤
⎥⎦ (5)

The covariance matrix is fundamental to characterizing SAR image to corresponding scattering
components, e.g., surface, double-bounce, and volume scattering. Cloude and Pottier have proposed a
polarimetric coherence matrix, reformulating the covariance matrix in the Pauli basis, with the target
vector in the reciprocal mono-static case given by Equation (2). Then, the coherence matrix can be
expressed as follows:

[T3] =
1
2

⎡
⎢⎢⎢⎣

〈
|Shh + Svv|2

〉
〈(Shh + Svv)(Shh − Svv)∗〉 〈2(Shh + Svv)S∗

hv〉
〈(Shh − Svv)(Shh + Svv)∗〉

〈
|Shh − Svv|2

〉
〈2(Shh − Svv)S∗

hv〉
〈2Shv(Shh + Svv)∗〉 〈2Shv(Shh − Svv)∗〉

〈
4 |Shv|2

〉

⎤
⎥⎥⎥⎦ (6)

Yamaguchi Decomposition Parameters Yamaguchi et al. proposed four-component decomposition
scheme [13]; this can decompose coherency matrix to the surface, double-bounce, volume, and helix
scattering. Mathematical expressions to compute surface and volumetric scattering coefficients are
listed below:

γs = 1
2

〈
|SHH + SV V |2

〉
− 4

〈
|SHV |2

〉
+ 2 |Im 〈S∗

HV (SHH − SV V )〉| (7)

γv = 8
〈
|SHV |2

〉
− 4 |Im 〈S∗

HV (SHH − SV V )〉| (8)

Corresponding surface and volumetric scattering power can be obtained by:

Ps = γs(1 + |β|2); Pv = γv (9)

Eigen Decomposition Parameters Cloude and Pottier (1996) proposed the following description for the
eigen vectors of the covariance matrix in Pauli basis [14]:

ẽ =
[
cos α sin α cos βeiδ sin α sinβeiγ

]
(10)

The average angle α can be calculated using

Alpha(α) = P1λ1 + P2λ2 + P3λ3 (11)
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where

λ1 =
1
2
|SHH + SV V |2 (12)

λ2 =
1
4
|SHH − SV V |2 + |SHV |2 + ImS∗

HV (|SHH − SV V |2) (13)

λ3 =
1
4
|SHH − SV V |2 + |SHV |2 − ImS∗

HV (|SHH − SV V |2) (14)

Entropy is the measure of target randomness or disorder, which is defined as:

Entropy(H) = −
3∑

i=1

pi · log3(pi); pi =
λi

3∑
k=1

λk

(15)

Similarly, anisotropy can be defined as:

Anisotropy(A) =
λ2 − λ3

λ2 + λ3
(16)

Backscattering Coefficient The radar backscattering coefficient σo provides information about the
imaging surface, and it is the function of radar observation parameters: frequency, polarization, incident
angle, and surface parameters: roughness, geometric shape, and dielectric constant of the target.

σo
slc = 10 · log10

〈
I2 + Q2

〉
+ CF1 + A (17)

where σo is the backscattering coefficient (sigma naught or sigma zero, units in dB), and CF1 = −83
[units: dB] and A = 32 [units: dB] are calibration factors, respectively [15–17].

Diversity Index A diversity index reflects how many different species exist in a given dataset, and
it also considers how evenly different species are distributed in the dataset. It also explains diversity,
richness, and abundance in the given set of data. The expressions for Shannon index, Simpson index,
Reyni Entropy, Gini Simpson Index, and perplexity are given as below:

Shannon Index = −
n∑

i=1

pi · ln(pi) (18)

Simpson Index =
1

n∑
i=1

p2
i

(19)

where p is the proportion (n/N) of individuals of one particular species found (n) divided by the total
number of individuals found (N).

GiniSimpson Index = 1 −
n∑

i=1

p2
i (20)

The Renyi entropy of order q, where q ≥ 0 and q �= 1, is defined as:

ReyniEntropy =
1

1 − q
· ln
(

n∑
i=1

pq
i

)
(21)

Perplexity = exp
(
− 1

N
log(p(x))

)
(22)
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Figure 1. Location of the study area.

3. DATA AND METHOD

3.1. Study Area

The study site is located in tropical peat and kerangas forests around Palangkaraya, the capital city of
Central Kalimantan Province, Indonesia (Figure 1). Central Kalimantan lies within the Inter-Tropical
Convergence Zone (ITCZ), and it falls under the wet tropical climate region. Central Kalimantan is hot
and humid, and the mean daily temperature ranges from 24C◦ to 30C◦. Annual rainfall varies between
2,500 and 2,800 mm [18–20]. Rainfall in study area is common throughout the year; however, October
to February is the rainy season, and March to September are dry months. The forest canopy has three
strata with a maximum height of 35 m. The principal tree species of the upper canopy are Gonystylus
Bancanus, Shorea spp. (Meranti), Cratoxylon Glaucum (Gerongang), and Dactylocladus Stenostachys
(Mentibu). The mix swamp forest grades into the low-pole forest, which continues for a further 7 km
from Sebangau river or so. Low canopy forest has only two strata and very few trees of commercial
value. The principal species of the upper canopy are Combretocarpus Rotundatus (Tumeh), Palaquium
sp., Dyera Costulata, Ilex Cymosa, Dyospyros sp., and Calophyllum spp [21, 22]. The study site is
relatively flat with an elevation that varies between 4m and 157 m.

Rainfall is common throughout the year and varies from about 60 inches (150 cm) to over 180 inches
(450 cm) per year. In most parts of Sabah, the wettest months occur during the North East Monsoon
from October through February and the driest months during the South West Monsoon from March to
September.

3.2. SAR and Ancillary Data

ALOS-2 PALSAR Quad-Pol data was acquired for study site on April 23, 2015, in single look complex
(SLC) format at incident angle 30.85◦. The study area was covered in two adjacent scenes as shown
in Figure 2. Temperature, humidity, and precipitation acquired from the nearest weather station
indicate the local weather conditions. Land cover of the study site was obtained from CIFOR Atlas for
Borneo Island (https://www.cifor.org/map/atlas/). SRTM 30 m DEM of study site was acquired from
EarthExplorer (https://earthexplorer.usgs.gov/).
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3.3. Field Data

Reference data wer acquired through a 30-day field visit in the study site. This field visit was conducted
from August 20, 2018, to September 21, 2018. A total 56 plots of dimensions 20m × 20m = 400 m2

were sampled. However, only data from 54 plots were used for further analysis because data in 2 plot
were incomplete. The spatial distributions of sample plots are shown in Figure 2.

Figure 2. Spatial distribution of field data.

In each plot, biophysical parameters of the individual tree were measured, including diameter at
breast height (DBH), tree species, and plot center GPS location. Due to existence of wild life and
limited available resources, field data were only collected over easily accessible forest patches.

3.3.1. Data Cleaning — Removing Outliers

As Kalimantan forest mainly regrew and was logged during past 40–50 years, almost all age groups
are present in sampled plots. The variability of DBH in individual plots is shown in Figure 4(a).
It can be seen from Figure 4(a), DBH ranges from 2.55 cm to 150 cm. Locally developed allometric
equations are listed in Table 1. Biomass is computed using all allometric equations listed in Table 1.
A comparison of biomass estimated from locally developed allometric equations and generic allometric
equation developed by Chave [52] is shown in Figure 3. However, biomass using allometric equations
developed by [23] was chosen due to following two reasons: 1) This allometric equations is developed for
mix species in central Kalimantan, 2) its estimation is close to the one estimated by generic allometric
equation. Then plot-based AGB is calculated by aggregating biomass of all trees in each sample plot.
Later, plot-based biomass is upscaled to 1 hectare scale by multiplying it with upscaling factor x (in
our case, x = 25). As we are upscaling biomass estimated in 20m × 20 m plot to 1 hectare scale, it is
important to address outliers that exist in individual plot. In this research, we only consider DBH for
forest AGB estimation; however if tree height is also available, more precise forest AGB estimation can
be performed.

A few outliers will affect the estimated plot-based biomass and later introduce significant over-
/under-estimation in reference field aboveground biomass data. In this research, outliers were removed
from data by using inter-quartile range (IQR). Using Equation (23), outliers were removed from field
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Table 1. Locally developed allometric equations for mix forest. Where St, Br, Tw, Le and WSG are
Stem, Branch, Twing, Leaf and wood specific gravity respectively.

Allometric Model Sample
Tree

Component
DBH (cm) R2 Reference

lnAGB = −3.408 + 2.708 ∗ lnD 40 St 1.1–115 0.98 [24]
AGB = 2.708 ∗ D2.486 bda St 2–35 0.90 [25]

lnAGB = −2.26 + 1.27 ∗ lnD2 184 St 4.8–69.7 0.99 [23]
lnAGB = −4.26 + 1.36 ∗ lnD2 184 Br + Tw 4.8–69.7 0.91 [23]
lnAGB = −3.86 + 1.01 ∗ lnD2 184 Le 4.8–69.7 0.81 [23]
lnAGB = 1.201 + 2.196 ∗ ln(D) 122 St 6.5–200 0.96 [26]

lnAGB = −0.744 + 2.188 ∗ log(D) + 0.832 ∗ log(WSG) 122 St 6.5–200 0.97 [26]
lnAGB = −2.289 + 2.649 ∗ ln(D) − 0.021 ∗ ln(D)2 226 St 5–148 0.98 [27]

AGB = 42.69 − 12.8(D) + 1.242(D2) 170 St 5–148 0.84 [28]

Figure 3. Biomass estimation using locally developed allometric equations vs generic allometric
equation by Chave (2014) [23].

data, where Q1 and Q3 are the first and third quartiles, respectively. The distributions of DBH in
individual plot before and after removing outliers are shown in Figure 4.

IQR = Q3 − Q1; Q3 + 1.5IQR < Outlier < Q1 − 1.5IQR (23)

Similarly, the distribution of resultant biomass, calculated using [23] is shown in Figure 4(c).

3.4. PolSAR Data Processing

Single Look Complex (SLC) data of the study site were acquired from JAXA. The data were
polarimetrically calibrated by JAXA [15]. These data were multi-looked to get 5 meter square pixel
size in resultant image. Backscattering coefficients for HH,HV, V H, and V V channels were estimated
using Equation (17). Yamaguchi decomposition parameters (surface and volumetric scattering power)
were computed using Equation (9). Eigen decomposition parameters, i.e., alpha (α), entropy, and
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(a)

(b)

(c)

(d)

Figure 4. Boxplot representation. (a) Distribution of AGB in sampled plots. (b) Distribution of AGB
in sampled plot after removing outliers.

anisotropy were computed using Equations (11), (15), and (16), respectively. Similarly, diversity indices
were computed using Equations (18), (19), (20), (21), and (22), respectively. The whole processing was
done using PolSARpro provided by European Space Agency (ESA) and PCI Geomatica. All of the
computed parameters were terrain corrected, and lee sigma 5× 5 speckle filter was applied to smoothen
the speckles in the image. All of the computed parameters for further analysis are listed in Table 2.

For all the sample plots, 1 × 1 hectare mask was generated, and pixels under each mask
were extracted for computed parameters listed in Table 2; also mean value of all extracted pixels
corresponding to sample plot was computed. Regression analysis was performed between upscaled 1
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Figure 5. Methodological framework.

Figure 6. Correlation matrix between polarimetric parameters.
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Table 2. Polarimetric parameters extracted from ALOS PALSAR-2.

Polarimetric Parameters Description
σHH Backscatter Coefficient of HH Channel
σHV Backscatter Coefficient of HV Channel
σV H Backscatter Coefficient of V H Channel
σV V Backscatter Coefficient of V V Channel

σHH/HV Backscatter Coefficient of HH/HV ratio
σV V/V H Backscatter Coefficient of V V/V H ratio

E Scattering Entropy
Eigen Decomposition [29] Alpha (α) Scattering Mechanism

A Anisotropy
γs Surface Scattering

Yamaguchi Decomposition [13] γd Double Bounce Scattering
γv Volume Scattering

GSI Gini Simpson Index
IQV Inverse Qualitative Inversion
P Perplexity

Diversity Index [30] RE2 Reyni Entropy (order n = 2)
RE3 Reyni Entropy (order n = 3)
RE4 Reyni Entropy (order n = 4)
SI1 Shannon Index
SI2 Simpson Index

Table 3. Biomass estimation models based on regression analysis between ground data and polarimetric
parameters.

Parameter
Model

Y = a + b ∗ log(x)
R2 RMSE

Y a b

Perplexity 1.998 0.1009 0.67 0.0417
Shannon Index (SI1) 0.6924 0.0285 0.67 0.0118

Entropy (E) 0.6774 0.03188 0.66 0.0134
Gini Simpson Index 0.4599 0.01829 0.62 0.0084

Index of Qualitative Inversion 0.6924 0.02686 0.62 0.0125
Reyni Entropy (order 2) 0.2858 0.09595 0.61 0.0455

σHV −24.88 2.846 0.57 1.4424
Alpha (α) 35.48 1.557 0.56 0.8135

σV V −18.07 2.241 0.55 1.1835
γvol 87.95 2.052 0.49 1.2293

hectare referenced biomass measurements and corresponding mean values of all computed parameters.
The regression results are shown in Table 3 and Figure 7. Among 56 sample plots collected during
the field visit, data in two plots were not complete; those three plots were deleted from sampled data.
Among reaming 54 plots, 42 were used as training plots for regression, and 12 plots were used for model
validation.
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Figure 7. ALOS-2 based polarimetric parameters plotted against biomass (n = 42) and fitted popwer
model.

The relationship between parameters extracted from ALOS-2 quad-pol data and referenced
aboveground biomass was modeled using a logarithmic regression Equation (24). The accuracy of
such a model is significantly influenced beyond the saturation point.

Y = ao + a1lnX (24)

where X = aboveground forest biomass in Mgha−1, Y = parameters extracted from SAR data,
ln = natural log base e, ao and a1 are regression coefficients. For such models, model inversion needs
to be performed to get biomass estimation models. The detailed methodological framework is shown in
Figure 5.

4. RESULTS AND DISCUSSION

The correlation matrix among all computed polarimetric parameters is shown in Figure 6.
This matrix explains the relative importance of considered parameters for biomass estimation.

From Figure 6, it can be seen that Shannon Index, Reyni Entropy, Perplexity, IQV, and GSI are highly
correlated. It means that if we select only one parameter among these parameters, that can be the
representative of all.
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A significant correlation was found among diversity indices (perplexity, Shannon index, Gini
Simpson index, index of qualitative inversion, and Reyni Entropy), polarimetric parameters (volumetric
scattering power, alpha (α), and entropy), and backscattering coefficient (σHV , σV V ) with referenced
biomass measurements.

Among available variables, perplexity, Shannon index, and entropy were found most correlated
with the referenced aboveground biomass with R2 0.67, 0.67, and 0.66, respectively; these results are in
line with the results obtained in published literature [31–36]. Detailed regression results are shown in
Table 3. Using the regression model listed in Table 3, model inversion was performed to get the biomass
estimation model. By using resultant models, biomass maps were generated using the individual inverted
model.

The regression results for backscatter coefficient (σ), polarimetric parameters, diversity indices,
and referenced aboveground biomass are shown in Figure 7. The initial aboveground biomass generated

Figure 8. Model validation — Regression results between referenced and predicted biomass
measurements, total 12 sampled referenced biomass measurements were used for validation.
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maps were thresholded to remove unrealistic high values, and a low-pass smoothing filter was applied
to remove further outliers. The generated biomass maps were validated using the validation set of
referenced biomass measurements (n = 12), where ‘n’ is the number of validation data points. The
validation results are shown in Figure 8. From Figure 8, it can be seen that predicted biomass using
perplexity is higher compared to referenced measurements values; however, R2 is 0.95 with RMSE
13.59 Mgha−1. Similarly, Shannon Index, Entropy, GSI, and σHV overestimate biomass compared with
referenced measurement. Also, validation results for biomass estimation using IQV, Reyni Entropy,
Alpha (α), and σV V are also promising with reference measurement; however, for low biomass region
predicted values are over estimated, and for higher biomass region predicted biomass is underestimated.
The validation results are promising with reference to the field data with root mean square error (RMSE)
ranging from 12.87 to 25.63 Mgha−1. Validation results are summarized in Table 4.

Table 4. Forest biomass estimation with accuracy estimates.

Parameter R2 RMSE (Mgha−1)
Perplexity 0.95 13.59
Entropy 0.95 12.87

Shannon Index 0.90 19.28
GSI 0.90 20.34
IQV 0.86 18.99

Reyni Entropy 0.86 19.96
σHV 0.84 25.63
α 0.82 22.21

σV V 0.81 23.48
γvol 0.81 23.48

Figure 9. Forest biomass distribution in study area.

Biomass map of study area generated using perplexity model is shown in Figure 9. It can be seen
that most of the region has an average biomass ranging from 140 Mgha−1 to 200 Mgha−1. However, a
few regions have higher biomass region with the maximum value of 290.60 Mgha−1 and minimum value
of 49.31 Mgha−1. Although the regression results are significant, due to the nonuniform distribution
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of sample referenced plots in the study site, the proposed model is limited to biomass region with an
average biomass ranging from 50 Mgha−1 to 300 Mgha−1.

4.1. Limitations

In this research, accurate forest aboveground biomass was accurately estimated with following
limitations:

(i) As we can see, the referenced field measurements are uniformly distributed throughout the study
area, and more referenced field measurements are needed to get a more accurate local biomass
map. Furthermore, the allometric equations used in this study area are generic regional allometric
equations; to get a more precise biomass map, species specific allometric equations are needed.

(ii) As region specific tree species allometric equations were not available, we have used regional
allometric equations. However, tree species specific allometric equations can provide more accurate
biomass estimation.

(iii) As explained by [50], L-band SAR signal saturates at 250 Mgha−1. However, most of the field based
biomass measurements used are under 200 Mgha−1, and only one measurement is over 200 Mgha−1.
Higher field based measurements are needed to precisely identify saturation point in this study.

5. CONCLUSIONS

This study presents tropical peatland forest aboveground biomass estimation using polarimetric
parameters, diversity indices, and backscatter coefficient extracted using L-band ALOS PALSAR-2
dataset. A detailed methodology for preprocessing and extracting parameters is explained, and the
parameters sensitives to aboveground biomass are identified by performing regression analysis of selected
parameters with referenced field measurements. The referenced field data was divided into training (70
percent; n = 42) and validation (30 percent; n = 12) set. The validation set of referenced measurement
was used to validated generated biomass, and acceptable R2 was achieved. The reported RMSE ranged
from 13.59 Mgha−1 to 23.48 Mgha−1.

This study will benefit in the further development of region-specific high-resolution biomass maps.
However, more field-based referenced plot measurements are needed with relatively uniformly distributed
and covering dominating forest species and density class in the study site.

Kalimantan Island, also called the lungs of Asia, has now become a very prominent study area
for researchers around the world, and recently many efforts have been made for aboveground biomass
estimation using optical, SAR, and lidar. Most of the studies using SAR and lidar are region specific,
and these studies only consider biomass estimation modeling using backscatter information using X-,
C- and L-band SAR. However, there is a need to investigate more advanced polarimetric parameters to
have an in-depth understanding of biomass potential in the region.
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