Vol. 97
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-11-15
A New Prediction Method of Rain Attenuation Along Millimeter Wave Links Based on a Bivariate Model for the Effective Path Length and Weibull Distribution
By
Progress In Electromagnetics Research C, Vol. 97, 29-41, 2019
Abstract
Cellular technology is moving towards its 5th generation (5G) that will employ millimeter wave (mmWave) frequencies in the attempt to offer more spectrum and multi-Gigabit-per-second (Gbps) data rates to mobile devices.Various unfavorable propagation phenomena affect mmWave communications, rain attenuation being the most severe one. Various rain attenuation prediction models can be taken into account in the design of terrestrial links based either on cumbersome statistical regression, when sufficient local experimental data are available, or on analytical models where only local rain rate measurements are provided. In this paper, a new prediction method for the rain attenuation is proposed based on a bivariate model for the numerical estimation of the effective path length of a millimeter wave terrestrial link and on Weibull distribution forthe representation of the point rainfall rate statistics. To validate the proposed prediction method, the actual data taken into account are extracted from experiments included in the databank of ITU-R SG3.The numerical results obtained show a significant improvement of the prediction accuracy compared to existing prediction models.
Citation
Spiros N. Livieratos, Zisis Ioannidis, Stylianos Savaidis, Stelios Mitilineos, and Nikolaos Stathopoulos, "A New Prediction Method of Rain Attenuation Along Millimeter Wave Links Based on a Bivariate Model for the Effective Path Length and Weibull Distribution," Progress In Electromagnetics Research C, Vol. 97, 29-41, 2019.
doi:10.2528/PIERC19081704
References

1. Rappaport, T. S., et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, May 2013.
doi:10.1109/ACCESS.2013.2260813

2. Kibria, M. G., K. Nguyen, G. P. Villardi, O. Zhao, K. Ishizu, and F. Kojima, "Big data analytics, machine learning, and artificial intelligence in next-generation wireless networks," IEEE Access, Vol. 6, 32328-32338, May 2018.
doi:10.1109/ACCESS.2018.2837692

3. Rangan, S., T. S. Rappaport, and E. Erkip, "Millimeter-wave cellular wireless networks: Potentials and challenges," Proceedings of the IEEE, Vol. 102, No. 3, 366-385, Mar. 2014.
doi:10.1109/JPROC.2014.2299397

4. MacCartney, G. R. and T. S. Rappaport, "Rural macrocell path loss models for millimeter wave wireless communications," IEEE Journal on Selected Areas in Communications, Vol. 35, No. 7, 1663-1677, Jul. 2017.
doi:10.1109/JSAC.2017.2699359

5. Thomas, T. A., et al. "A prediction study of path loss models from 2–73.5 GHz in an urban-macro environment," 2016 IEEE 83rd Vehicular Technology Conference (VTC 2016-Spring), 1-5, Nanjing, China, May 2016.

6. Shrestha, S. and D. Y. Choi, "Rain attenuation statistics over millimeter wave bands in South Korea," Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 152, 1-10, Jan. 2017.

7. Lin, S. H., "A method for calculating rain attenuation distribution on microwave paths," Bell Syst. Tech. J., Vol. 54, 1051-1086, 1975.
doi:10.1002/j.1538-7305.1975.tb02882.x

8. Morita, K. and I. Higuti, "Prediction methods for rain attenuation distributions of micro and millimetre waves," Rev. Elec. Comm. Labs, Vol. 24, No. 7-8, 651-668, 1977.

9. Fedi, F., "Prediction of attenuation due to rainfall on terrestrial links," Radio Sci., Vol. 16, No. 5, 731-743, 1981.
doi:10.1029/RS016i005p00731

10. Moupfouma, F., "Improvement of rain attenuation method for terrestrial microwave links," IEEE Trans. Ant. and Prop., Vol. 32, 1368-1372, 1984.
doi:10.1109/TAP.1984.1143248

11. Livieratos, S. N., V. Katsabas, and J. D. Kanellopoulos, "A global method for the prediction of the slant path rain attenuation statistics," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 5, 713-724, Jan. 2000.
doi:10.1163/156939300X01436

12. Moupfouma, F. and L. Martin, "Modeling of the rainfall rate cumulative distribution for the design of satellite and terrestrial communication systems ," International Journal of Satellite Communications, Vol. 13, 105-115, Mar./Apr. 1995.
doi:10.1002/sat.4600130203

13. Crane, R. K., Electromagnetic Wave Propagation through Rain, John Wiley & Sons Series, UK, 1996.

14. Freeman, R. L., Radio System Design for Telecommunication, 3rd Ed., A Wiley Inter-science Publication, Wiley, John Wiley & Sons Inc., 2007.
doi:10.1002/0470050446

15. ITU-R Recommendation P.838–3 Specific Attenuation Model for Rain for Use in Prediction Methods, ITU, Geneva, Switzerland, 2005.

16. ITU-R Recommendation P.530-16 Propagation Data and Prediction Methods Required for the Design of Terrestrial Line-of-Sight Systems, ITU, Geneva, Switzerland, 2015.

17. ITU-R Recommendation P.837-7 Characteristics of Precipitation for Propagation Modelling, ITU, Geneva, Switzerland, 2017.

18. Da Silva Mello, L. A. R., M. S. Pontes, R. M. D. Souza, and N. A. P. Garcia, "Prediction of rain attenuation in terrestrial links using full rainfall rate distribution," IEEE Electron. Lett., Vol. 43, 1442-1443, Dec. 2007.
doi:10.1049/el:20072410

19. Moupfouma, F., "Electromagnetic waves attenuation due to rain: A prediction model for terrestrial or L.O.S SHF and EHF radio communication links," J. Infrared Millim. Terahertz Waves, Vol. 30, 622-632, Mar. 2009.
doi:10.1007/s10762-009-9481-y

20. Lin, S. H., "National long term rain statistics and empirical calculation of 11 GHz microwave rain attenuation," Bell Syst. Tech. J., Vol. 56, 1581-1604, Nov. 1977.

21. Patki, N., R. Wedge, and K. Veeramachaneni, "The synthetic data vault," IEEE International Conference on Data Science and Advanced Analytics (DSAA) 2016, 399-410, Montreal, Canada, Oct. 2016.

22. ITU-R Recommendation P.311-13 Acquisition, Presentation and Analysis of Data in Studies of Tropospheric Propagation, ITU, Geneva, Switzerland, 2009.