Vol. 97
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-12-06
Recursive Least Squares Dictionary Learning Algorithm for Electrical Impedance Tomography
By
Progress In Electromagnetics Research C, Vol. 97, 151-162, 2019
Abstract
Electrical impedance tomography (EIT) is a technique for reconstructing conductivity distribution by injecting currents at the boundary of a subject and measuring the resulting changes in voltage. Sparse reconstruction can effectively reduce the noise and artifacts of reconstructed images and maintain edge information. The effective selection of sparse dictionary is the key to accurate sparse reconstruction. The EIT image can be efficiently reconstructed with adaptive dictionary learning, which is an iterative reconstruction algorithm by alternating the process of image reconstruction and dictionary learning. However, image accuracy and convergence rate depend on the initial dictionary, which was not given full consideration in previous studies. This leads to the low accuracy of image reconstruction model. In this paper, Recursive Least Squares Dictionary Learning Algorithm (RLS-DLA) is used to learn the initial dictionary for dictionary learning of sparse EIT reconstruction. Both simulated and experimental results indicate that the improved dictionary learning method not only improves the quality of reconstruction but also accelerates the convergence.
Citation
Xiuyan Li, Jingwan Zhang, Jianming Wang, Qi Wang, and Xiaojie Duan, "Recursive Least Squares Dictionary Learning Algorithm for Electrical Impedance Tomography," Progress In Electromagnetics Research C, Vol. 97, 151-162, 2019.
doi:10.2528/PIERC19081001
References

1. Wang, Q., et al. "Reconstruction of EIT images via patch based sparse representation over learned dictionaries," Instrumentation & Measurement Technology Conference, IEEE, 2015.

2. Goharian, M., M. Soleimani, and G. R. Moran, "A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data," Progress In Electromagnetics Research, Vol. 94, 19-32, 2009.
doi:10.2528/PIER09052003

3. Vauhkonen, M., et al. "Tikhonov regularization and prior information in electrical impedance tomography," IEEE Transactions on Medical Imaging, Vol. 17, No. 2, 285-293, 1998.
doi:10.1109/42.700740

4. Oraintara, S., "A method for choosing the regularization parameter in generalized tikhonov regularized linear inverse problems," Int. Conf. Image Process, Vol. 1, 2000.

5. Tian, W., M. F. Ramli, W. Yang, and J. Sun, "Investigation of relaxation factor in landweber iterative algorithm for electrical capacitance tomography," 2017 IEEE International Conference on Imaging Systems and Techniques (IST), 1-6, Beijing, 2017.

6. Baloch, G. and H. Ozkaramanli, "Image denoising via correlation-based sparse representation," Signal, Image and Video Processing, 2017.

7. Quan, X., et al. "Image denoising based on adaptive over-complete sparse representation," Chinese Journal of Scientific Instrument, Vol. 30, No. 9, 1886-1890, 2009.

8. Elad, M. and M. Aharon, "Image denoising via sparse and redundant representations over learned dictionaries," IEEE Transactions on Image Processing, Vol. 15, 3736-3745, 2006 (Pubitemid 44811686).
doi:10.1109/TIP.2006.881969

9. Rubinstein, R., et al. "Dictionaries for sparse representation modeling," Proceedings of the IEEE, Vol. 98, No. 6, 1045-1057, 2010.
doi:10.1109/JPROC.2010.2040551

10. Wang, J., et al. "Split Bregman iterative algorithm for sparse reconstruction of electrical impedance tomography," Signal Processing, Vol. 92, No. 12, 2952-2961, 2012.
doi:10.1016/j.sigpro.2012.05.027

11. Aharon, M., M. Elad, and A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," IEEE Transactions on Signal Processing, Vol. 54, No. 11, 4311-4322, 2006.
doi:10.1109/TSP.2006.881199

12. Engan, K., K. Skretting, and J. H. Husøy, "A family of iterative LS-based dictionary learning algorithms, ILS-DLA, for sparse signal representation," Digital Signal Processing, Vol. 17, 32-49, Jan. 2007.
doi:10.1016/j.dsp.2006.02.002

13. Mailhé, B., S. Lesage, R. Gribonval, and F. Bimbot, "Shift-invariant dictionary learning for sparse representations: Extending K-SVD," Proceedings of the 16th European Signal Processing Conference (EUSIPCO2008), Lausanne, Switzerland, Aug. 2008.

14. Mairal, J., F. Bach, J. Ponce, and G. Sapiro, "Online dictionary learning for sparse coding," ICML’09: Proceedings of the 26th Annual International Conference on Machine Learning, 689-696, ACM, New York, NY, USA, Jun. 2009.

15. Su, H., F. Xing, and L. Yang, "Robust cell detection of histopathological brain tumor images using sparse reconstruction and adaptive dictionary selection," IEEE Trans Med Imaging, Vol. 35, No. 6, 1575-1586, 2016.
doi:10.1109/TMI.2016.2520502

16. Jin, B., T. Khan, and P. Maass, "A reconstruction algorithm for electrical impedance tomography based on sparsity regularization," International Journal for Numerical Methods in Engineering, Vol. 89, No. 3, 337-353, 2012.
doi:10.1002/nme.3247

17. Gong, B., et al. "Sparse regularization for EIT reconstruction incorporating structural in formation derived from medical imaging," Physiological Measurement, Vol. 37, No. 6, 843-862, 2016.
doi:10.1088/0967-3334/37/6/843

18. Wang, Q., et al. "Patch based sparse reconstruction for electrical impedance tomography," Sensor Review, Vol. 37, No. 3, 2017.

19. Fan, W., et al. "Modified sparse regularization for electrical impedance tomography," Review of Scientific Instruments, Vol. 87, 2016.

20. Zhao, B., H. X. Wang, X. Y. Chen, X. L. Shi, and W. Q. Yang, "Linearized solution to electrical impedance tomography based on the Schur conjugate gradient method," Measurement Science and Technology, Vol. 18, No. 11, 3373-3383, 2007.
doi:10.1088/0957-0233/18/11/017

21. Skretting, K. and K. Engan, "Image compression using learned dictionaries by RLS-DLA and compared with K-SVD," IEEE International Conference on Acoustics, IEEE, 2011.

22. Press, H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, "Section 2.7.3. Noodbury Formula," Numerical Recipes: The Art of Scientific Computing, 3rd Edition, Camdridge University Press, New York, ISBN 978-0-521-88068-8, 2007.

23. Adler, A., et al. "GREIT: A unified approach to 2D linear EIT reconstruction of lung images," Physiological Measurement, Vol. 30, No. 6, S35-S55, 2009.
doi:10.1088/0967-3334/30/6/S03

24. Abubaker, A. and P. M. van den Berg, "Total variation as a multiplicative constraint for solving inverse problems," IEEE Transactions on Image Processing, A Publication of the IEEE Signal Processing Society, Vol. 10, No. 9, 0-1392, 2001.