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Recursive Least Squares Dictionary Learning Algorithm
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Xiuyan Li, Jingwan Zhang, Jianming Wang*, Qi Wang, and Xiaojie Duan

Abstract—Electrical impedance tomography (EIT) is a technique for reconstructing conductivity
distribution by injecting currents at the boundary of a subject and measuring the resulting changes
in voltage. Sparse reconstruction can effectively reduce the noise and artifacts of reconstructed images
and maintain edge information. The effective selection of sparse dictionary is the key to accurate sparse
reconstruction. The EIT image can be efficiently reconstructed with adaptive dictionary learning, which
is an iterative reconstruction algorithm by alternating the process of image reconstruction and dictionary
learning. However, image accuracy and convergence rate depend on the initial dictionary, which was
not given full consideration in previous studies. This leads to the low accuracy of image reconstruction
model. In this paper, Recursive Least Squares Dictionary Learning Algorithm (RLS-DLA) is used
to learn the initial dictionary for dictionary learning of sparse EIT reconstruction. Both simulated
and experimental results indicate that the improved dictionary learning method not only improves the
quality of reconstruction but also accelerates the convergence.

1. INTRODUCTION

EIT is an imaging modality that aims at estimating conductivity distribution within a domain through
several electrodes attached to its surface [1]. Pairs of electrodes are consecutively used to generate
different current density distributions within the domain. The electric potential of the surface is
measured by the other electrodes apart from the current excitation. The cross-sectional conductivity
images are reconstructed eventually through the measured potentials.

Due to the serious nonlinearity and ill-posedness of EIT inverse problem, a set of boundary
measurements can often obtain lead to solutions that satisfy the condition [2]. Research on
reconstruction algorithms is devoted to how to get the optimal solution. In recent years, many
reconstruction algorithms have been proposed, such as Tikhonov regularization, iterative Tikhonov,
and projected Landweber iteration [3–5]. Compared with the general reconstruction algorithms, a
strategy of obtaining high-resolution images or signals from a small amount of data has been provided
based on sparse reconstruction methods in recent years. The sparse reconstruction yields quantitatively
correct reconstructions and has a good performance in image denoising due to good robustness in case
that the inclusion does have a sparse representation [6]. However, such a constraint is not satisfied by
EIT images; therefore, sparse reconstruction cannot be effective. It means that EIT images need to be
sparsely transformed, and some sparse reconstruction algorithms for EIT have been proposed in recent
years [7, 8].

Dictionary learning can derive a dictionary which is able to approximate each image signal of EIT
with a sparse combination of the atoms [9]. Dictionary learning consists of two parts, sparse coding and
dictionary update, and a strategy of alternating these two parts has been adopted in most algorithms.
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Several Dictionary Learning Algorithms (DLAs) have been presented in recent years [10–15]. Compared
to fixed dictionaries, such as Discrete Cosine Transform (DCT), Wavelets, image reconstruction based on
adaptive dictionaries could obtain detailed information of reconstructed image attribute to the alternate
process of image reconstruction and dictionary learning [16–19]. As for adaptive dictionary, the choice
of an initial dictionary is crucial. However, the initial dictionary of some traditional adaptive dictionary
learning algorithms is directly formed with some atoms from the original signal, such as K-SVD. The
training set is used iteratively to gradually optimize the dictionary without considering how to choose an
optimum initial dictionary. It may result in the algorithm failing into a local minimum. Furthermore,
the algorithm has limitations in dealing with high-dimensional data and computational complexity,
hence the rate of convergence is slowed down. Its another drawback is that too few samples can lead
to overtraining, since the prior information of reconstruction is not considered sufficiently. When more
prior information of reconstructed image is carried by the initial dictionary, it will be beneficial to
improve both sparsity and convergence speed while guaranteeing the image quality. The specialized
initial dictionary learned by a class of signals can better preserve the image information without leading
the algorithm to a local minimum error.

In this paper, we use RLS-DLA to learn an overcomplete initial dictionary for dictionary learning
of EIT reconstruction. The dictionary could be updated continuously as each training vector is being
processed, which makes it possible to learn an initial dictionary containing prior information with a large
number of samples. It is expected to improve imaging quality and convergence rate. Both simulated
and experiment are carried out to prove the performance of the proposed method.

2. IMAGE RECONSTRUCTION BASED ON DICTIONARY LEARNING

EIT inverse problem is the process of image reconstruction. Namely, the voltage value between the pair
of electrodes and the object field distribution are known, and the medium distribution in the object field
is reconstructed to obtain visual information inside the object field. A model of EIT can be written as

V = U(σ, I) = R(σ)I (1)

where V = U(σ, I) is the forward model mapping the conductivity distribution σ and injected current
vector I to the boundary voltage vector V , and R(σ) is the model mapping σ to resistance. The inverse
problem can be expressed as

δU = U ′ (σ0) δσ = Jδσ (2)

where δσ ∈ Rn×1 (n is the number of pixels of the reconstructed image) is the change in conductivity
σ, and δU ∈ Rm×1 (m is the number of independent voltage measurements) is the perturbation of
boundary voltage due to the change of σ. J ∈ Rm×n is the Jacobian matrix, which means the partial
derivatives of voltages with respect to conductivity.

The patch-based sparsity for conductivity distribution, i.e., the reconstructed image, is appealing
because patch-based dictionaries can capture the local image features effectively and can potentially
remove noise and aliasing artifacts in EIT without sacrificing resolution. In order to solve the inverse
problem, the mathematical model of the patch-based sparse method based on dictionary learning is
built in our previous work [1].

min
δσ,D,Γ

∑
i
‖Piδσ − Dwi‖2

F + ν ‖Jδσ − δU‖2
2

s.t. ‖wi‖0 ≤ T0 ∀i
(3)

where T0 is the sparse level, and w is the sparse coefficient. We define the image block decomposition
operator as Pi ∈ RL×n (L is the number of pixels in each image block). v is a weight parameter, which
depends on the measurement noise. This makes it more robust to noise.

Solving Equation (3) is carried out in two steps, 1) the conductivity distribution vector δσ is fixed,
and the dictionary and sparse coefficients are updated

min
δσ,D,Γ

∑
i
‖Piδσ − Dwi‖2

F

s.t. ‖dk‖2 = 1 ∀k, ‖wi‖0 ≤ T0 ∀i, j
(4)
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2) Fixing dictionary and corresponding sparse coefficients and updating reconstructed conductivity
distribution vector δσ, the corresponding update problem is

min
δσ

∑
ij

‖Piδσ − Dwi‖2
F + ν ‖Jδσ − δU‖2

2 (5)

The first term in Equation (5) is used to evaluate the quality of the reconstructed image based on
the dictionary D for the block sparse approximation, and the second term is used to evaluate the
reconstructed image fidelity.

In the reconstruction process, δU0 (EIT measured voltage) is the input, and the output is δσ
(reconstructed conductivity distribution). A fast Schur conjugate gradient (Schur CG) method is used
to accelerate the computation [20]. Let δU0 multiplied by J as initial δσ0. Initialize the dictionary as
D0. The iterative process including two steps: 1) Keeping δσ fixed, update D and W , 2) Keeping D
and W fixed, update δσ based on Eq. (3). These two steps are alternated so that the solution gradually
approaches to the true value. DCT dictionary is used as the initial dictionary in previous work without
considering the prior information of conductivity distribution. To solve this problem, a large number
of samples are used to learn the initial dictionary D0 specifically with RLS-DLA.

3. INITIALIZING DICTIONARY BASED ON RLS-DLA

RLS-DLA is used to learn an initial dictionary D0 with a lot of images as training samples for the
update reconstruction process mentioned in the second part [21].

We define a dictionary represented as a matrix D ∈ RM×K , where each atom is a column in D.
K is the number of dictionary atoms denoted by

{
d(k)

}K

k=1
, and with K > M , a redundant dictionary

is implied. The true conductivity distribution δσ for training dataset constitutes a matrix denoted as
H = [δσ1, δσ2, . . . , δσi]. Each δσi of H is divided into patches, and the patch column vector set of δσi

is represented as x = {δσij}J
j=1, where J is the patches number of each δσi, and all the patches of every

δσ in H form a training sample set
X = {xn}N

n=1 ∈ RM×N (6)
where N is the total number of observed data vectors. X can be approximately expressed as a linear
combination of dictionary

X̃ = DW, r = X − X̃ = X − DW (7)

where r is the reconstruction error, and W = {wn}N
n=1 ∈ RK×N is a sparse coefficient matrix, which

can be computed by matching pursuit method. The dictionary learning aims to solve the following
optimization problem

min
{
‖X − DW‖2

F

}
s.t. ‖wn‖0 ≤ T0 (8)

The dictionary learning problem can be formulated as an optimization problem with respect to W and
D

{Dopt,Wopt} = arg min
D,W

‖W‖0 + γ ‖X − DW‖2
F (9)

For the practical relaxation, the optimization problem can be split into two parts, 1) Keeping D
fixed, find W , and 2) Keeping W fixed, find D. This strategy is adopted in other dictionary learning
algorithms. However, the choice of an initial dictionary, D0, is crucial for dictionary learning. Without
prior information, too few samples can lead to overtraining. Excessively increasing the number of
iterations can lead to long execution time. RLS-DLA overcomes these problems by using a scheme that
continuously update the dictionary.

In the derivation of RLS-DLA, a ‘time step’ t is introduced, and the matrices Xt = [x1, x2, . . . xt] of
size N × t, Wt = [w1, w2, . . . wt] of size K × t, and Ct =

(
WtW

T
t

)−1 are defined, and the dictionary Dt

is solved according to the least squares minimization of ‖Xt − DtWt‖2
F , i.e., Dt =

(
XtW

T
t

) (
WtW

T
t

)−1.
Using the matrix inversion lemma (Woodbury matrix identity) on Ct [22], we get the following simple
updating rules

Ct = Ct−1 − αuuT , (10)
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Dt = Dt−1 + αrtu
T , (11)

where

u = Ct−1wt (12)

α = 1
/(

1+wT
t u

)
(13)

As a new training vector, xt will be provided at every new iteration, and the process of the algorithm
can be generally expressed as follow

Initialization: Let D0 denote an initial dictionary, which is composed of K training vectors randomly
picked from the samples of conductivity distribution. C0 denotes an initial C matrix, possibly the
identity matrix.

Iteration:
1. Get the new training vector xt.
2. Find wt by using Dt−1 and a vector selection algorithm.
3. Find the representation error rt = xt − Dt−1wt.
4. Calculate u and α based on Eqs. (12) and (13).
5. Update the dictionary through Eq. (11).
6. Update the C matrix through Eq. (10).
The iteration stops as the representation error rt < ε, where ε is a target relative error.
The dictionary is updated continuously as each new training vector is processed. This makes the

RLS-DLA a reasonable choice for learning an initial dictionary.

4. SIMULATION EXPERIMENT

In this paper, an EIT system with 16 electrodes is used for 2D imaging of round object field. The
method of adjacent current excitation and adjacent voltage measurement is adopted. Thereafter, we
obtain 208 measurements to reconstruct an EIT image. The conductivity value of the background
substance is equal to 1 Sm−1. The conductivity variation phantoms are established with a value equal
to 3 Sm−1.

The samples used to learn the initial dictionary are constructed with COMSOL Multiphysics
software. Three kinds of training data are created, as shown in Figure 1. The imaging area of the
model is a circular area with a radius of 1 cm. A circular inclusion is simulated, with a radius on 0.16
and center values in the closed interval [0, 0.6]. A square inclusion is simulated, with side length of
0.32 and center values in the closed interval [0, 0.6]. A circular and a square combination inclusions are
simulated, with radius of 0.16, side length of 0.32, and the center in the interval [0, 0.6]. The resolution
for the image is 32×32 (the actual number of pixels is 812). The number of different kinds of samples is
same, which can avoid sample imbalance. The whole training dataset H includes 3627 images, in which
every kind of dataset has 1209 images. According to the size of the target object in the training images,
the patch size is chosen as 5 × 5, and the number of dictionary atoms is set to K = 60, M = 25. Each
image is composed of 576 patches, and as a consequence, over 2 million patches are obtained based on
3267 images for sample data which constitute X in Equation (6).

In this section, we mainly optimize the model by adjusting the learning rate and the number of
iterations. As for dictionary learning, learning rate is an important factor to be considered. The learning

(a) (b) (c)

Figure 1. The samples used to learn the dictionary. The model of containing (a) one circle, (b) one
square and (c) a circle and a square inclusions are constructed with COMSOL Multiphysics software.
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rate is set to 0.02, 0.2, and 0.1. The number of iterations of reconstruction also significantly affects
image quality. Keep the number of iterations fixed when optimizing the learning rate, and keep the
learning rate fixed when optimizing the number of iterations. 1% level of noise is added to the simulated
voltages for testing the noise robustness of the new method.

EIT image is reconstructed based on the dictionary learning algorithm discussed in Section 2, and
the conductivity distribution is obtained by measuring the changes in voltage. RLS-DLA is used to learn
an initial dictionary with prior information, using Equations (10) and (11) to update the dictionary.
Difference image, position error (PE), and shape deformation (ΔS) are adopted to effectively evaluate
EIT image quality [23]. We define

PE =
rt − r0

r0
(14)

where r0 is the distance from the center of the target to the origin in the true-value image, and rt is the
distance from the Center of Gravity (COG) of the target to the origin in the reconstructed image. ΔS
is a parameter used to evaluate the shape deformation of the target object in the reconstructed image,
which can be expressed as

ΔS =
Nt − N0

N0
(15)

where Nt is the number of pixels in a given threshold of the reconstructed image, and N0 is the number
of pixels in the true-value image whose value is 1.

Two models are simulated to test the new method. PE, ΔS, and difference image are used to
evaluate the image quality. In Figure 2, comparing the results at different learning rates (LR) when
the number of iterations is fixed to 4 times, PE and ΔS of two methods are shown in Table 1. In this

(a) 

(b) 

Figure 2. Reconstructed images obtained from simulated voltage data with different learning rates.
(a) The model of one square and (b) the model of a circle and a square are simulated.
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Table 1. PE and ΔS of the new method at different learning rates.

New method
LR = 0.02 LR = 0.2 LR = 1

PE (a) 0.1176 0.0877 0.1476
ΔS (a) 0.1067 0.0311 0.1111
PE (b) 0.2223 0.1542 0.1799
ΔS (b) 0.0800 0.0333 0.0667

Table 2. PE and ΔS of the new method at different number of iterations.

New method
n = 2 n = 6 n = 10 n = 14

PE (a) 0.1476 0.1298 0.1148 0.1778
ΔS (a) 0.1111 0.0400 0.0044 0.3333
PE (b) 0.1664 0.1213 0.0923 0.0991
ΔS (b) 0.0733 0.0433 0.0200 0.0867

experiment, the threshold used to calculate ΔS is set to 0.62, which means that we calculate ΔS in a
region where the pixel value is greater than 0.62.

From Figure 2, the difference images illustrate that both LR = 0.02 and LR = 1 still cause a number
of artifacts in homogeneous regions where the signal magnitude is zero. And both of them correspond
to larger errors in the region where the signal magnitude is equal to one. We can see from Table 1
and Figure 3 that both the PE and ΔS obtain the smallest value when LR = 0.2. So we fix the initial
dictionary with LR = 0.2 to discuss the number of iterations (expressed as n), and the result is shown
in Figure 4 and Table 2.

Figure 3. The bar graph associated with Table 1.

In Figure 4, when n = 10, we get the best visual effect with the fewest artifacts, and the difference
image corresponds to the smallest error in all regions. It can be seen from Table 2 and Figure 5 that
as the number of iterations increases to 10, PE and ΔS become smaller and smaller, but continuing to
increase the number of iterations will result in larger PE and ΔS. Therefore, in the following simulation
experiment, for the new method, we fix the initial dictionary D0 with LR = 0.2 and fix the number of
iterations n = 10.

The reconstruction results of traditional conjugate gradient method and total variation (TV)
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(a) 

(b) 

Figure 4. Reconstructed images obtained from simulated voltage data with different number of
iterations. (a) The model of one square and (b) the model of a circle and a square are simulated.

Figure 5. The bar graph associated with Table 2.

method [24] are compared with that of patch-based sparsity method based on fixed DCT initial
dictionary and RLA-DLA initial dictionary. As can be observed from Figure 6, new method shows
better performance in both artifacts suppression and details preservation. We can see that the conjugate
gradient method is seriously affected by the ill-posedness so that the error is large. DCT and TV perform
better than CG but still worse than the new method. The difference image of the new method obviously
corresponds to the smallest value in all regions. We know that PE and ΔS are important characteristics
for EIT. From Table 3 and Figure 7, the new method obtains minimum value of two parameters, which
means that the new method is superior to the other two in terms of positioning and shape recovery of
the target object.

In order to compare the convergence rate of DCT fixed dictionary method and the new method,
we calculate the relative error (RE) under different iteration times based on the previous experiment.
It can be seen from Figure 8 that the DCT method does not reach the minimum RE until n = 16,
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(a) 

(b) 

Figure 6. Reconstructed images of (a) the model of one square and (b) the model of a circle and a
square are obtained from simulated voltage data with four different methods.

Table 3. Comparison of the four methods in terms of PE and ΔS.

CG DCT TV New method
PE (a) 0.3400 0.1600 0.1480 0.1148
ΔS (a) 0.3644 0.2133 0.1856 0.0044
PE (b) 0.2832 0.1544 0.1333 0.0923
ΔS (b) 0.1133 0.0533 0.0500 0.0200

while the convergence rate of new method is greatly increased because of using the initial dictionary
with prior information.

5. EXPERIMENTAL RESULTS WITH REAL DATA

An EIT system has been developed by our group, as shown in Figure 9. In the data acquisition and
control system, AC-based sensing electronics is composed of the resistor voltage (R/V) converter and
AC programmable gain amplifier (AC-PGA). The digital signals are captured and processed by the
FPGA (Xilinx Spartan3XC3S400), including digital phase-sensitive demodulation (digital PSD), and
first-in, first-out (FIFO). The data acquisition speed of the system is approximately 30 frames/s. Sixteen
composite electrodes are evenly distributed on the inner surface of the container. Adjacent currents
injected from a single current source and adjacent voltage measurement strategies are used. 0.3 mA
sinusoidal current signal is used for excitation, and all measurements are made at 3 kHz. The voltage
values on the adjacent electrodes are measured and circulated in sequence until all of them are excited,
resulting in 208 measured voltage values.

A perspex vessel with an inner diameter of 200 mm is used in the experiment, filled with saline
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Figure 7. The bar graph associated with Table 3.

(a) (b)

Figure 8. Comparison of convergent rate between DCT fixed dictionary method and new method, (a)
the model of one square; (b) the model of a circle and a square.

Figure 9. Experimental EIT system.
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water (0.42 Sm−1) to a height of 10 cm to serve as the material of the image background. Four agar robs
are used in the experiment, and the cross-section shapes are circular (diameter d = 3 cm, d = 6 cm) and
square (side length a = 3cm, a = 6 cm). The conductivities of all agar rods are 0.71 Sm−1.

As shown in Figure 10, three groups of real data experiments have been implemented. In the
experiments, the new method is compared with the CG, DCT dictionary methods and TV method in
terms of RE (relative error), PE, and ΔS. The optimal initial dictionary D0 obtained in the simulation
experiment is applied in the new method, and the number of iterations n = 10 is chosen for image
reconstruction.

From Figure 10 we can see that the new method can remove artifacts superior to the conjugate
gradient method, DCT dictionary metho,d and TV method, and Table 4 shows that the new method
not only can get the smallest RE but also performs best in positioning and recovering the target shape.

Figure 10. Image reconstruction of experiments.

Table 4. Comparison of the four methods in terms of RE, PE and ΔS.

CG DCT TV New method

1
RE
PE
ΔS

0.3700
0.4325
0.4889

0.3569
0.4407
0.4667

0.3025
0.3125
0.4025

0.2429
0.1152
0.1778

2
RE
PE
ΔS

0.4376
0.1383
0.1527

0.3563
0.0969
0.1250

0.3100
0.0795
0.0834

0.2317
0.0352
0.0556

3
RE
PE
ΔS

0.3919
0.2128
0.7391

0.3676
0.0935
0.5217

0.3333
0.0735
0.3500

0.2141
0.0585
0.0870

6. CONCLUSIONS

In this paper, the sparse method based on dictionary learning is used for EIT imaging. To improve
the efficiency of dictionary learning, prior information of conductivity distribution is introduced for the
initial sparse dictionary based on RLS-DLA. The quality of the reconstructed image can be improved
with an accelerated convergence rate. Furthermore, the shape deformation of the reconstruction based
on the new method is respectively reduced more than 70%, 62%, and 50% compared to CG, DCT, and
TV methods method. The position error of the new method is respectively reduced by approximately
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60%, 41%, and 30% compared to CG, DCT, and TV methods. The relative error is reduced by more
than 30% compared to traditional methods. As for the convergence rate, the new method improves
37% compared to DCT method. Both simulated and experimental results illustrate the effectiveness of
the new method.
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