Vol. 96
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-12-21
A Fast Deterministic Algorithm for Side Lobe Level Reduction of Open Loop Coplanar Distributed Antenna Arrays in WSNs
By
Progress In Electromagnetics Research C, Vol. 96, 43-58, 2019
Abstract
Distributed beamforming (DBF) is an efficient technique for reliable communications in wireless sensor networks (WSNs). In DBF based networks, the randomly distributed nodes cooperate together to form a randomly distributed antenna array (RAA) which has a main beam directed towards the intended receiver. Due to the nodes randomness, the DBF results in poor pattern characteristics such as high side lobe level (SLL) and pattern asymmetry around the main beam sides. In this paper, a fast deterministic algorithm for SLL reduction of open loop distributed antenna arrays is introduced. Unlike the existing state of the art optimization techniques for SLL reduction, the proposed algorithm provides a fast deterministic solution for energy transmission or the weight of each node without changing its location. Consequently, the exhaustive search burden of the optimization based techniques for the optimum weights is avoided. The simulation results reveal that the proposed algorithm has superior performance to the optimization techniques in terms of execution time, synthesized SLL, and half power beam width (HPBW).
Citation
Haythem Hussein Abdullah, Heba Soliman Dawood, and Amr Hussein Hussein Abdullah, "A Fast Deterministic Algorithm for Side Lobe Level Reduction of Open Loop Coplanar Distributed Antenna Arrays in WSNs ," Progress In Electromagnetics Research C, Vol. 96, 43-58, 2019.
doi:10.2528/PIERC19072704
References

1. Bhattacharyya, K., Phased Array Antennas: Floquet Analysis, Synthesis, BFNs and Active Array Systems, John Wiley & Sons, 2006.

2. Adachi, F., W. Peng, T. Obara, T. Yamamoto, R. Matsukawa, and S. Nakada, "Distributed antenna network for gigabit wireless access," International Journal of Electronics and Communications (AE ¨ U), Vol. 66, No. 8, 605-612, 2012.
doi:10.1016/j.aeue.2012.03.010

3. Jung, S. Y. and B. W. Kim, "Near-optimal low-complexity antenna selection scheme for energy-efficient correlated distributed MIMO systems," International Journal of Electronics and Communications (AE ¨ U), Vol. 69, No. 7, 1039-1046, 2015.
doi:10.1016/j.aeue.2015.04.002

4. Valenzuela-Valdes, J., F. Luna, R. Luque-Baena, and P. Padilla, "Saving energy in WSNs with beamforming," IEEE, International Conference on Cloud Networking, 255-260, 2014.

5. Ochiai, H., P. Mitran, H. V. Poor, and V. Tarokh, "Collaborative beamforming for distributed wireless ad hoc sensor networks," IEEE Transactions on Signal Processing, Vol. 53, No. 11, 4110-4124, 2005.
doi:10.1109/TSP.2005.857028

6. Jayaprakasam, S., S. K. A. Rahim, and C. Y. Leow, "Distributed and collaborative beamforming in wireless sensor networks: Classifications, trends, and research directions," IEEE Communications Surveys & Tutorials, Vol. 19, No. 4, 2092-2116, 2017.
doi:10.1109/COMST.2017.2720690

7. Ahmed, M. F. and S. A. Vorobyov, "Sidelobe control in collaborative beamforming via node selection," IEEE Transactions on Signal Processing, Vol. 58, No. 12, 6168-6180, 2012.
doi:10.1109/TSP.2010.2077631

8. Liang, S., T. Feng, G. Sun, J. Zhang, and H. Zhang, "Transmission power optimization for reducing sidelobe via bat-chicken swarm optimization in distributed collaborative beamforming," IEEE International Conference on Computer and Communications (ICCC), 2164-2168, 2016.

9. Jayaprakasam, S., S. Rahim, L. C. Yen, and K. Ramanathan, "Genetic algorithm based weight optimization for minimizing sidelobes in distributed random array beamforming," IEEE International Conference on Parallel and Distributed Systems, 623-627, 2013.

10. Jayaprakasam, S., S. K. A. Rahim, C. Y. Leow, and T. O. Ting, "Sidelobe reduction and capacity improvement of open-loop collaborative beamforming in wireless sensor networks," PloS one, Vol. 12, No. 5, 1-33, 2017.
doi:10.1371/journal.pone.0175510

11. Jayaprakasam, S., S. K. A. Rahim, C. Y. Leow, and M. F. M. Yusof, "Beampatten optimization in distributed beamforming using multiobjective and metaheuristic method," IEEE Symposium on Wireless Technology and Applications (ISWTA), 86-91, 2014.
doi:10.1109/ISWTA.2014.6981202

12. Jayaprakasam, S., S. Rahim, and C. Y. Leow, "PSOGSA-explore: A new hybrid metaheuristic approach for beampattern optimization in collaborative beamforming," Applied Soft Computing, Vol. 30, 229-237, 2015.
doi:10.1016/j.asoc.2015.01.024

13. Jayaprakasam, S., S. K. A. Rahim, C. Y. Leow, T. O. Ting, and A. A. Eteng, "Multiobjective beampattern optimization in collaborative beamforming via NSGA-II with selective distance," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 5, 2348-2357, 2017.
doi:10.1109/TAP.2017.2684187

14. Shi, W., Y. Li, L. Zhao, and X. Liu, "Controllable sparse antenna array for adaptive beamforming," IEEE Access, Vol. 7, 6412-6423, 2019.
doi:10.1109/ACCESS.2018.2889877

15. Li, Y., Y. Wang, and T. Jiang, "Norm-adaption penalized least mean square/fourth algorithm for sparse channel estimation," Signal Processing, Vol. 128, 243-251, 2016.
doi:10.1016/j.sigpro.2016.04.003

16. Li, Y., Y. Wang, and T. Jiang, "Sparse-aware set-membership NLMS algorithms and their application for sparse channel estimation and echo cancelation," AEU — International Journal of Electronics and Communications, Vol. 70, No. 7, 895-902, 2016.
doi:10.1016/j.aeue.2016.04.001

17. Li, Y., Z. Jiang, W. Shi, X. Han, and B. Chen, "Blocked maximum correntropy criterion algorithm for cluster-sparse system identifications," IEEE Transactions on Circuits and Systems II: Express Briefs, 2019.

18. Yu, K., Y. Li, and X. Liu, "Mutual coupling reduction of a MIMO antenna array using 3-D novel meta-material structures," Applied Computational Electromagnetics Society Journal, Vol. 33, No. 7, 758-763, 2018.

19. Jiang, T., T. Jiao, and Y. Li, "A low mutual coupling MIMO antenna using periodic multi-layered electromagnetic band gap structures," Applied Computational Electromagnetics Society Journal, Vol. 33, No. 3, 305-311, 2018.