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A Fast Deterministic Algorithm for Side Lobe Level Reduction
of Open Loop Coplanar Distributed Antenna Arrays in WSNs

Haythem H. Abdullah1, Heba S. Dawood2, and Amr H. Hussein2, *

Abstract—Distributed beamforming (DBF) is an efficient technique for reliable communications in
wireless sensor networks (WSNs). In DBF based networks, the randomly distributed nodes cooperate
to form a randomly distributed antenna array (RAA) which has a main beam directed towards the
intended receiver. Due to the nodes randomness, the DBF results in poor pattern characteristics such
as high side lobe level (SLL) and pattern asymmetry around the main beam sides. In this paper, a fast
deterministic algorithm for SLL reduction of open loop distributed antenna arrays is introduced. Unlike
the existing state of the art optimization techniques for SLL reduction, the proposed algorithm provides
a fast deterministic solution for energy transmission or the weight of each node without changing its
location. Consequently, the exhaustive search burden of the optimization based techniques for the
optimum weights is avoided. The simulation results reveal that the proposed algorithm has superior
performance to the optimization techniques in terms of execution time, synthesized SLL, and half power
beamwidth (HPBW).

1. INTRODUCTION

The traditional antenna arrays consisting of periodic structures such as linear, planar, and circular
antenna arrays configurations suffer from scan blindness problem and tight fabrication constraints [1].
Also, the utilization of co-located antennas or traditional arrays in wireless communication systems
may lead to significant frequency selective fading, limited transmit power, limited bandwidth, and
reduced system capacity. As a promising solution for these critical problems, the distributed antenna
networks have been introduced in [2]. In the same context, the distributed Multi-input Multi-output
(D-MIMO) has been introduced in [3] for further enhancement of the spectral and energy efficiency
of the conventional co-located MIMO (C-MIMO). Wireless Sensor Networks (WSNs) consist of a large
number of sensor nodes distributed over a specific area. The nodes are collaborating together for sensing,
collecting, and processing information. They have a limited power supply and can’t transmit a signal
for a long distance [4]. Distributed beamforming is the key solution for mitigating these problems. In
DBF, each sensor node acts as a virtual antenna element to construct a randomly distributed antenna
array (RAA). However, the randomness of the distributed nodes creates an array pattern having a
high SLL which causes high interference with the unintended receivers located within the same region
as well as reducing the received power level at the intended receiver [5, 6]. The interference with the
unintended receivers limits the system capacity and increases the bit error rate. As antenna arrays
with low side lobe levels are required for efficient and reliable communications, many research works
are introduced for SLL reduction of distributed antenna arrays. In [7], a node selection based technique
for SLL reduction was introduced. It is mainly based on selecting a combination of nodes from the
available set of nodes in the WSN and determines the nodes weights according to their locations.
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However, it depends on the MAC protocol and one-bit feedback from the unintended receiver which
is impossible in some cases. In [8], a modified version of the node selection technique denoted as Bat-
Chicken Swarm Optimization (BATCSO) was introduced. It tends to optimize the peak SLL of the
array pattern by controlling the nodes transmission energies. A long these lines, a Genetic Algorithm
(GA) based technique for SLL minimization was introduced in [9]. It synthesizes the transmission energy
of each node without changing the nodes locations. It provides better performance compared to the
conventionally distributed beamforming (CDBF). In [10], two Weightless Swarm Algorithm (WSA) and
Particle Swarm Optimization (PSO) based techniques were introduced for SLL reduction by adjusting
the nodes transmission energy. But, they suffer from increased computational complexity. The WSA
based technique provided higher SLL reduction than GA and PSO based techniques which consequently
improves the signal to noise and interference ratio (SINR) and the capacity of unintended receivers.
Along these lines, PSO and Gravitational Search Algorithm (GSA) based SLL reduction techniques
were introduced in [11]. They control both transmission energy and transmission phase of each node
without any changes in the nodes locations. In [12], a hybrid meta-heuristic optimization algorithm
denoted as (PSOGSA-E) which is a combination between the PSO and GSA-Explore was introduced.
It suppresses the SLL by optimizing the weight (amplitude and phase) of each node in the RAA. Also,
the Non-dominated Sorting GA with selective distance (NSGA-SD) algorithm was introduced in [13].
It provides a bi-objective optimization formulation for the DBF. It controls the weight (amplitude and
phase) of each node to minimize the SLL and at the same time maximizes the directivity of the array
pattern. But, it is worth pointing to that all the aforementioned SLL reduction techniques which are
based on optimization algorithms are time consuming.

There are several applications such as satellite communications, radar systems, and wireless sensor
networks where large arrays sizes are very critical to achieve the desired radiation patterns to fulfill the
required systems performances. However, large antenna arrays based systems have large computation
burden, complex RF front end chains, and high power consumption. To mitigate these problems,
adaptive beamforming making the use of sparse characteristics of large antenna arrays based systems is
the key solution. In [14], an efficient l0-norm constrained normalized least-mean-square (L0-CNLMS)
adaptive beamforming algorithm for controllable sparse antenna arrays was introduced. It is suitable
for sparse antenna arrays of different configurations such as standard hexagonal array (SHA) used
in satellite communications, rectangular array (RA) used for C-band based radar systems, triangular
array (TA) used for P-band based stealth aircraft and satellite detection systems, and irregular arrays
(IA) used for S-band communications. Also, it converges faster and utilizes fewer number of antenna
elements compared to state of the art sparsity based adaptive beamforming algorithms. However, for
non-sparse arrays, its performance is degraded and provides high SLL compared to the conventional
non-sparse beamforming algorithms. In the same context, several sparsity based optimization filtering
algorithms can be utilized in the SLL reduction as introduced in [15–17]. These algorithms have proved
their effectiveness in the well-defined antenna arrays structures such as linear and planar configurations.
However, they have to be modified to be applied to randomly distributed antenna arrays. In RAAs,
the randomness of nodes distribution may make the separation distances between some of the array
nodes to be small enough to maximize the mutual coupling between the neighboring nodes. Several
techniques have been introduced to minimize the coupling effect between the antenna arrays elements
as in [18] and [19].

In this paper, a fast deterministic DBF algorithm for maximum SLL reduction of open loop
distributed antenna arrays is introduced. It determines the transmission energy of each node without
inspiring the node location. It saves the computation time and search burden of the best weights required
to synthesize the desired pattern, especially for large size RAAs. Also, it does not require feedback from
the unintended receivers. The simulation results revealed that the proposed technique outperforms the
recent state of the art optimization based SLL reduction techniques which handle the nodes weights.
It is suitable for the distributed automotive 77 GHz radar sensors. The existing low power 77 GHz
radar sensors suffer from their limited detection range. To extend the radar range, some randomly
distributed sensors within a specific area can be grouped to form a RAA to take the advantage of array
gain in increasing the radar range. This work is done under the contract between the National Telecom
Regulatory Authority (NTRA), Ministry of Communications and Information Technology (MCIT),
Egypt and the Electronics Research Institute (ERI), Ministry of scientific research, Egypt start date
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2018. The paper is organized as follows. In Section 2, the system model is introduced. The proposed
SLL reduction algorithm is presented in Section 3. The simulation results are illustrated in Section 4.
Finally, the paper is concluded in Section 5.

2. SYSTEM MODEL

In this section, the geometrical configuration of distributed antenna arrays is introduced. Consider K
nodes which are distributed over a circular disk of radius R meters. Each node has polar coordinates
(rk, ψk) where rk is the distance of the kth node from the central point of the cluster, rk ∈ [0, R],
and ψk is the azimuth angle of the kth node with respect to x-axis, ψk ∈ [−π, π]. It is assumed that
all nodes are isotropic antennas and coplanar with each other. Furthermore, all nodes are perfectly
synchronized in phase, time, and frequency. Assume that an intended receiver exists in the proximity of
other unintended receivers distributed randomly in space as shown in Fig. 1. The intended receiver has
spherical coordinates (A, θ0, ϕ0), where A is the distance between the intended receiver and the central
point of the RAA, θ0 the elevation direction, θ0 ∈ [0, π], and ϕ0 the azimuth direction, ϕ0 ∈ [−π, π] of the
intended receiver. The spherical coordinates of the L unintended receivers are (Al, θl, ϕl), l = 1, 2, . . . L,
where Al is the distance between the unintended receiver and the central point of the RAA, θl the
elevation direction, θl ∈ [0, π], and ϕl the azimuth direction, ϕl ∈ [−π, π] of the unintended receivers.
Also, assume that the intended and unintended receivers are located within the same plane as the
distributed nodes where θ0 = θl = π

2 . Fig. 1 shows the geometrical structure of distributed antenna
array [5].

Figure 1. Geometrical structure of the distributed antenna array.

3. PROPOSED SLL REDUCTION ALGORITHM

In WSNs, to mitigate the high interference with the unintended receivers and increase the received
power level at the intended receiver, SLL reduction is the key solution. It significantly improves the
capacity and the bit error rate performance of the network. In this section, the proposed algorithm for
SLL reduction of RAAs is introduced. The steps of the proposed algorithm are presented as follows:

Consider an ordinary RAA consisting of K nodes distributed over a circular disk of radius R with
coordinates r = [r1, r2, . . . , rK ] and = [ψ1, ψ2, . . . , ψK ] where rk and ψk are the radius and angle of the
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kth node with respect to the center point of the RAA, respectively and k = 1, 2, 3, . . . K. The array
pattern of the RAA, AF (ϕ) is given by [5]:

AF (ϕ) =
1
K

K∑
k=1

wke
−j 2π

λ
rk cos(ϕ−ψk) (1)

where wk is the transmission weight of the kth node which is given by:

wk = ξke
jΨk (2)

where ξk and Ψk are the kth node transmission energy amplitude and initial transmission phase,
respectively. For a uniformly fed array, ξk = 1 and Ψk is determined by [5] as follows:

Ψk =
2π
λ
rk cos (ϕ0 − ψk) (3)

It is required to synthesize an array pattern which has a main beam directed towards the intended
receiver with minimum SLL. In this case, the desired array pattern, AF d (ϕ), can be defined as follows:

AF d (ϕ) =

⎧⎨
⎩

0, − π ≤ ϕ < ϕNL1

AF (ϕ) , ϕNL1 ≤ ϕ ≤ ϕNL2

0, ϕNL2 < ϕ ≤ π

(4)

where ϕNL1 and ϕNL2 are the angles of the first two nulls of the ordinary array pattern AF (ϕ). For
clarification, consider the ordinary array pattern for K = 16 elements, R = 1 m, and the main beam is
directed at ϕ0 = 0◦. Then, the desired array pattern AF d (ϕ) is plotted as shown in Fig. 2.

Figure 2. The desired array pattern AF d(ϕ) for K = 16 elements, R = 1 m and the main beam
directed at ϕ0 = 0◦.

The synthesized array pattern AF syn(ϕ) should have the same characteristics as the desired array
pattern AF d(ϕ) such that:

AF syn(ϕ) =
1
K

K∑
k=1

vke
−j 2π

λ
rkcos(ϕ−ψk) ∼= AF d(ϕ) (5)

where vk is the synthesized transmission weight of the kth node which equals δkejΨk . δk is the synthesized
transmission energy of the kth node, while the initial transmission phase Ψk of the kth node remains
fixed as defined in Eq. (3). Substituting vk in Eq. (5), the synthesized array pattern is rewritten as

AF syn(ϕ) =
1
K

K∑
k=1

δke
jΨke−j

2π
λ
rkcos(ϕ−ψk) ∼= AF d(ϕ) (6)
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To estimate the transmission energy of each node, δk, Eq. (6) is transformed into a matrix form as
follows:

[δ]1×K × [S]K×N = [U ]1×N (7)

or for simplicity Eq. (7) is written as:
δS = U (8)

where N is the number of samples of the desired pattern AF d(ϕ). The number of samples is chosen to
be large enough to maintain the pattern smoothness and details. For a given number of samples, N ,
the sample angles of ϕ ∈ [−π, π] can be calculated by:

ϕn =
2nπ
N

, n = 1, 2, 3, . . . N (9)

The elements of [U ]1×N vector are the samples of the desired pattern AF d(ϕ) at the sample angle ϕn
within the range −π ≤ ϕ ≤ π and can be defined as:

[U ]1×N = [AF d (ϕ1)AF d (ϕ2) . . . AF d(ϕN )] (10)

δ is the (1 ×K) vector of the synthesized transmission energies of the distributed nodes which is given
by

δ = [δ1δ2 . . . δK ] (11)

S is a K ×N matrix whose elements are given by

Skn =
1
K
ejΨke−j

2π
λ
rk cos(ϕn−ψk), k = 1, 2, . . . ,K and n = 1, 2, . . . , N (12)

The synthesized transmission energy vector can be obtained by solving Eq. (8). As S is a non-square
matrix, both sides of Eq. (8) are multiplied by the Hermitian transpose of the matrix S which is denoted
as SH . Then Eq. (8) is written as:

δSSH = USH (13)

Let RSS = SSH which is a K ×K square matrix. Then Eq. (13) can be rewritten as:

δRSS = USH (14)

Multiplying both sides of Eq. (14) by the inverse of the RSS matrix, the synthesized transmission energy
vectorcan be calculated by:

δ = USHR−1
SS (15)

where R−1
SS is the inverse of the square matrix RSS.

4. SIMULATION RESULTS

In this section, several simulations are carried out to evaluate and compare the performance of the
proposed algorithm with that of the GA based synthesis techniques introduced in [9, 10] and that of
the NSGA-SD algorithm introduced in [13]. The GA is utilized to synthesize the antenna array for the
maximum SLL reduction by optimizing the transmission energy δ which minimizes the following cost
function.

CF (δ) = 20log10
max(AF (ϕSL))
AF (ϕML)

(16)

where AF (ϕSL) is the amplitude of the array pattern at the side lobe angle ϕSL which is defined as
ϕSL ∈ [(−π, ϕNL1) ∪ (ϕNL2, π)], while AF (ϕML) is the amplitude of the array pattern at the main
lobe angle ϕML. Also, the maximum number of iterations (Iga) of the GA is limited to Iga = 100
as introduced in [9, 10]. In the simulations, the number of array pattern samples is set to N = 1000
samples for the proposed algorithm and the other algorithms of comparison introduced in [9], [10],
and [13]. The simulations are carried out using MATLAB R2016a on ASUS laptop intel core i5-5200U.
The simulation results are divided into two sections; Section 1 handles the analysis of the synthesized
array pattern, and Section 2 handles the analysis of the SLL under the impact of the variations in the
number of nodes, K, and the circular area radius, R.
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4.1. Synthesized Array Pattern Analysis

In this section, the synthesized array patterns using the proposed algorithm, GA, and NSGA-SD
optimization based techniques are compared with the ordinary array pattern in terms of the maximum
SLL, HPBW, execution time, and dynamic range ratio (DRR) which is defined as:

DRR =
maximum transmission energy
minimum transmission energy

=
δmax

δmin
(17)

Four test cases are considered using a small number of nodes distributed over a small circular area of
radius R, i.e., (K = 16 and R = 1 m), (K = 8 and R = 1 m), and using a large number of nodes
distributed over a moderate area, i.e., (K = 32 and R = 4m) and (K = 64 and R = 6m).

Test case (1): in this case, consider aK = 16 distributed antenna array whose nodes are randomly
distributed over a small circular disk area of radius R = 1 m as shown in Fig. 3. The direction of the
intended receiver is at the azimuth angle ϕ0 = 0

◦
. The estimated first two null angles of the ordinary

pattern are ϕNL1 = −34.56◦ and ϕNL2 = 41.04◦. Consequently, the desired array pattern, AF d (ϕ) is
defined according to Eq. (4) and the number of samples is set to N = 1000 samples. The synthesized
patterns using the proposed algorithm and the GA based algorithm compared to the ordinary pattern
are shown in Fig. 4. The resultant maximum SLL, HPBW, and DRR are listed in Table 1. It is clear
that the proposed algorithm provides the lowest SLL and the same HPBW as the ordinary pattern.
However, the DRR of the proposed algorithm is slightly greater than that of the GA. Also, it provides
about 256.78% reduction in the SLL while the GA provides only 56.60% reduction in the SLL. Using the
same number of samplesN = 1000, the estimated execution time of the proposed algorithm is 0.16163 sec
which is much lower than the execution time of the GA based algorithm which equals 320.2466 sec. The
polar coordinates (rkψk) and nodes energy transmissions (δk) of the synthesized patterns are tabulated
in Table 2.

Figure 3. The nodes distribution for K = 16 and R = 1m.

Table 1. The resultant maximum SLL, HPBW, DRR, and execution time of the proposed algorithm
and the GA compared to the ordinary pattern for K = 16 and R = 1 m.

Algorith Maximum SL HPBW DRR Execution time
Ordinary Pattern −8.9428 dB 28.44◦ 1 –

Proposed Algorithm −31.9066 dB 28.44◦ 19.5920 0.16163 sec
GA [9, 10] −14.0047 dB 30.96◦ 14.8762 320.2466 sec



Progress In Electromagnetics Research C, Vol. 96, 2019 49

Table 2. The polar coordinates (rk, ψk) and nodes energy transmissions (δk) of the synthesized pattern
for K = 16 and R = 1m.

Polar coordinates Nodes energy transmissions (δk)
k rk ψk Ordinary Proposed Algorithm GA
1 0.4842 −0.914 1 15.7500∠0.2129 0.9978
2 0.6779 0.6792 1 29.7940∠ − 0.6868 0.9542
3 0.8411 1.2698 1 4.6343∠−3.1496 0.2946
4 0.9956 −1.440 1 1.8428∠ − 6.0317 0.2378
5 0.2612 0.4538 1 26.9703∠−5.5416 0.2100
6 0.7952 −0.219 1 36.1041∠ − 8.4292 0.5661
7 0.2640 −0.660 1 24.8261∠ − 10.8984 0.2108
8 0.9916 0.4501 1 7.4936∠ − 9.4163 0.9451
9 0.8105 1.2628 1 6.5367∠ − 6.3128 0.4485
10 0.8275 −1.077 1 8.3310∠ − 4.6522 0.0671
11 0.9862 −1.113 1 4.8548∠ − 7.7595 0.4811
12 0.3394 0.7940 1 15.0842∠ − 4.9390 0.7645
13 0.8955 0.1461 1 24.2017∠−2.9559 0.1962
14 0.7340 −0.677 1 14.6938∠ − 0.9781 0.8216
15 0.3555 0.2202 1 7.1869∠−3.1065 0.1985
16 0.9713 −0.103 1 3.3245∠ − 5.8279 0.4555

Test case (2): in this case, consider a (K = 32 and R = 4 m) RAA whose main beam is directed
at the azimuth angle ϕ0 = 0◦ as shown in Fig. 5. The first two null angles of the ordinary pattern are
ϕNL1 = −8.68◦ and ϕNL2 = 8.28◦. Fig. 6 shows the synthesized patterns using the proposed algorithm
and the GA compared to the ordinary pattern, and the resultant maximum SLL, HPBW, and DRR
are listed in Table 3. The percentages of SLL reduction are 88.36% and 42.98% for the proposed
algorithm and the GA based algorithm respectively. The execution time of the proposed algorithm
is 0.2523 sec while the execution time of the GA equals 565.0136 sec. Furthermore, the DRR of the
proposed algorithm is smaller than that of the GA. The polar coordinates (rk, ψk) and nodes energy
transmissions (δk) of the synthesized patterns are listed in Table 4 and Table 5, respectively.

Table 3. The resultant maximum SLL, HPBW, DRR, and execution time of the proposed algorithm
and the GA compared to the ordinary pattern for K = 32 and R = 4 m.

Algorith Maximum SL HPBW DRR Execution time
Ordinary Pattern −8.9381 dB 7.56◦ 1 –

Proposed Algorithm −16.8359 dB 7.56◦ 17.9752 0.2523 sec
GA [6, 7] −12.7795 dB 8.28◦ 187.0206 565.0136 sec

Test case (3): in this case, consider a RAA whose parameters are (K = 64 and R = 6m) as
shown in Fig. 7. The direction of the intended receiver is at ϕ0 = 0◦. The estimated first two null
angles are ϕNL1 = −6.84◦ and ϕNL2 = 6.84◦. Fig. 8 shows the synthesized patterns using the proposed
algorithm and the GA compared to the ordinary pattern. The resultant maximum SLL, HPBW, and
DRR are listed in Table 6. The proposed algorithm and the GA provide SLL reduction about 116.83%
and 34.19% respectively. The proposed algorithm provides a suitable DRR which is smaller than that
of the GA. The execution time of the proposed algorithm is 0.259299 sec which is much lower than the
execution time of the GA which equals 1721.023 sec. The polar coordinates (rk, ψk) and nodes energy
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Figure 4. The synthesized patterns using the proposed algorithm and the GA compared to the ordinary
pattern for K = 16 and R = 1 m.

Figure 5. The nodes distribution for K = 32 and R = 4m.

transmissions (δk) of the synthesized patterns are listed in Table 7, Table 8, and Table 9, respectively.
Test case (4): in this case, the proposed algorithm is compared with the NSGA-SD algorithm

introduced in [13] for synthesizing a RAA whose parameters are (K = 8 and R = 4 m) as shown in
Fig. 9. Fig. 10 shows the synthesized patterns using the proposed algorithm and NSGA-SD compared
to the ordinary pattern. The resultant maximum SLL, HPBW, and DRR are listed in Table 10. The
simulation results revealed that the proposed algorithm outperforms the NSGA-SD algorithm in terms
of maximum SLL reduction and HPBW. It provides SLL reduction of about 123.97% while the NSGA-
SD provides a few reduction of about 42.76%. Also, the proposed algorithm provides the same HPBW
as the ordinary pattern while the NSGA-SD algorithm provides HPBW which is slightly greater than
that of the ordinary pattern. Furthermore, using the same number of samples N = 1000 samples, the
proposed algorithm provides a very small execution time of 0.09438 sec which is much lower than the
execution time of the NSGA-SD algorithm which equals 10 sec. The polar coordinates (rk, ψk) and
nodes transmission weights (vk) of the synthesized patterns are listed in Table 11.



Progress In Electromagnetics Research C, Vol. 96, 2019 51

Figure 6. The synthesized patterns using the proposed algorithm and the GA compared to the ordinary
pattern for K = 32 and R = 4 m.

Table 4. The polar coordinates (rk, ψk) and nodes energy transmissions (δk) of the synthesized pattern
for K = 32 and R = 4m.

Polarcoordinates Nodes energy transmissions (δk)
k rk ψk Ordinary Proposed Algorithm GA
1 2.6553 −0.757 1 0.9140∠0.8556 0.3433
2 3.9234 0.3059 1 0.6666∠ − 0.3410 0.9521
3 2.0722 −0.591 1 0.5477∠0.2746 0.0053
4 3.5536 −0.505 1 0.6914∠ − 1.1944 0.1701
5 3.1862 0.6389 1 0.5505∠−1.1972 0.0484
6 2.2991 −0.669 1 0.1842∠1.3524 0.0100
7 3.2846 −0.296 1 1.3402∠ − 0.3347 0.7344
8 2.7649 1.2815 1 1.8963∠1.7440 0.1082
9 2.2200 1.4641 1 3.3109∠ − 0.6330 0.5389
10 2.1880 −0.544 1 0.4172∠ − 1.3665 0.5891
11 3.3880 0.5188 1 1.4029∠0.7994 0.4571
12 0.9962 0.9142 1 0.9722∠ − 2.5973 0.3741
13 3.2684 0.1062 1 1.6215∠0.2036 0.9758
14 3.6165 0.5609 1 1.0629∠0.9961 0.7570
15 2.8659 −0.499 1 0.9242∠1.7201 0.6325
16 3.5685 −1.539 1 0.9499∠ − 0.9651 0.2144

4.2. Side Lobe Level Analysis

In this section, the resultant SLL is examined under the impact of the variations in the number of nodes,
K and the circular area radius R.

Case (1): in this case, the maximum SLL versus K over the same disk radius R = 1 m is estimated
for an intended receiver located at ϕ0 = 0◦. The resultant maximum SLL using the proposed algorithm,
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Table 5. The polar coordinates (rk, ψk) and nodes energy transmissions (δk) of the synthesized pattern
for K = 32 and R = 4m.

Polarcoordinates Nodes energy transmissions (δk)
k rk ψk Ordinary Proposed Algorithm GA
17 3.3281 0.8202 1 1.2163∠2.1403 0.1399
18 3.1480 0.7378 1 0.8306∠2.5130 0.0588
19 1.9732 −1.038 1 0.8169∠4.4694 0.0703
20 3.4765 −1.474 1 0.8774∠6.7142 0.1972
21 2.6898 −0.509 1 0.9463∠6.4790 0.8445
22 3.7000 0.3214 1 0.4570∠6.7499 0.9331
23 1.4750 1.3368 1 2.0058∠5.0911 0.5518
24 2.5896 0.0592 1 0.9423∠6.0520 0.9999
25 3.7174 −1.125 1 0.9521∠6.9203 0.2661
26 2.7914 1.4638 1 2.0410∠5.2970 0.5470
27 2.0031 0.2580 1 0.9731∠6.4173 0.6557
28 3.4931 −0.676 1 1.4351∠6.0215 0.9976
29 2.1547 1.2081 1 1.1327∠7.9586 0.3310
30 1.5932 −1.387 1 0.2206∠6.6079 0.8130
31 3.9965 −0.927 1 0.4402∠6.2421 0.7302
32 2.4736 −0.207 1 0.9784∠6.5731 0.7308

Figure 7. The nodes distribution for K = 64 and R = 6m.

GA, and the ordinary pattern are shown in Fig. 11. The simulation results revealed that the proposed
algorithm outperforms the GA technique as it provides maximum SLL range (from −31.9066 dB to
−40.3119 dB) when K changes from (K = 16 to K = 80). However, the ordinary pattern and
the GA provide maximum SLL range (from −8.9428 dB to −14.7544 dB) and (from −14.0047 dB to
−32.3507 dB), respectively.

Case (2): in this case, for a fixed number of the distributed nodes K = 16, the maximum SLL
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Figure 8. The synthesized patterns using the proposed algorithm and the GA compared to the ordinary
pattern for K = 64 and R = 6 m.

Table 6. The resultant maximum SLL, HPBW, DRR, and execution time of the proposed algorithm
and the GA compared to the ordinary pattern for K = 64 and R = 6 m.

Algorith Maximum SL HPBW DRR Execution time
Ordinary Pattern −10.5482 dB 5.4◦ 1 –

Proposed Algorithm −22.8713 dB 5.4◦ 23.1860 0.259299 sec
GA [9, 10] −12.8419 dB 5.5◦ 62.8482 1721.023 sec

Figure 9. The nodes distribution for K = 8 and R = 4 m.

versus disk radius R is estimated for an intended receiver located at ϕ0 = 0◦. Fig. 12 shows the resultant
maximum SLL using the proposed algorithm, GA, and the ordinary pattern over the disk radius range
(R = 1 m to 10 m). Also, it is clear that the proposed algorithm provides the highest performance over
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the entire range of disk radius. It provides maximum SLL range ( from −31.9066 dB to −7.8920 dB)
when the disk radius R changes from (R = 1m to 10 m). However, the ordinary pattern and the GA
provide maximum SLL ranges (from −8.9428 dB to −3.9208 dB) and (from −14.0047 dB to −5.5796 dB)
respectively.

Table 7. The polar coordinates (rk, ψk) for K = 64 and R = 6 m.

Polarcoordinates
k rk ψk k rk ψk k rk ψk k rk ψk

1 1.9157 −0.471 17 2.5249 1.0758 33 3.5861 −1.521 49 1.8737 −0.303
2 3.6516 −0.621 18 4.7466 1.1031 34 4.8725 0.7798 50 3.8408 0.7141
3 5.7384 0.3249 19 5.6172 −0.6290 35 3.7670 −0.584 51 2.1731 0.7369
4 5.9970 0.1321 20 2.5328 −0.405 36 2.5348 0.4253 52 5.2119 0.0044
5 2.4775 1.1248 21 4.8209 −0.149 37 1.3981 0.6896 53 3.5400 −1.236
6 2.4928 0.6844 22 5.6417 −0.614 38 2.9827 0.1857 54 4.0240 −0.822
7 1.9263 1.4323 23 3.0031 1.1940 39 5.6978 1.3289 55 2.6788 0.7561
8 4.6713 −0.779 24 4.5939 −1.023 40 5.9471 0.1632 56 5.1492 1.3315
9 3.8507 −0.167 25 4.1866 −0.370 41 4.1747 −0.036 57 2.7058 0.2669
10 3.0345 −1.556 26 5.4961 0.8670 42 2.2828 1.5371 58 5.2587 −1.116
11 2.6946 1.1376 27 1.3639 −0.123 43 4.2919 −0.111 59 2.9472 −1.325
12 2.5994 0.1341 28 5.1596 −0.379 44 5.9806 −0.305 60 4.7005 −1.077
13 5.6406 0.8122 29 4.4680 −1.232 45 5.2395 −0.178 61 3.5281 0.6887
14 4.7677 −0.879 30 3.9320 −1.145 46 5.8972 −0.078 62 5.1005 1.4072
15 4.7336 −1.277 31 5.2981 1.4547 47 5.7858 −0.924 63 2.0543 −0.737
16 4.8680 1.1787 32 3.7789 0.8876 48 2.9178 −1.199 64 2.5512 0.0031

Table 8. The nodes energy transmissions (δk) of the synthesized pattern for K = 64 and R = 6m.

Nodes energy transmissions (δk)

k Ordinary Proposed Algorithm GA k Ordinary Proposed Algorithm GA

1 1 7.3130∠ − 2.2610 0.8607 17 1 32.9661∠ − 1.7764 0.8589

2 1 34.9493∠ − 2.3199 0.5446 18 1 1.7948∠ − 4.1720 0.1068

3 1 28.0571∠ − 0.9256 0.2117 19 1 14.6898∠ − 5.3713 0.7646

4 1 2.3330∠1.7749 0.0801 20 1 30.3403∠ − 7.4535 0.4388

5 1 36.7422∠2.1666 0.5406 21 1 34.3154∠ − 8.0161 0.4295

6 1 14.0118∠4.9403 0.8883 22 1 2.1285∠−7.1076 0.0578

7 1 10.6703∠2.7589 0.7297 23 1 20.6731∠ − 4.8484 0.1366

8 1 18.1557∠ − 0.4330 0.5311 24 1 11.7723∠ − 3.8676 0.2403

9 1 31.4089∠0.0851 0.7362 25 1 27.0197∠ − 4.5441 0.0158

10 1 5.1443∠ − 0.5024 0.4748 26 1 3.1625∠ − 4.7318 0.9937

11 1 19.5027∠0.8992 0.3001 27 1 4.5873∠−3.9360 0.4950

12 1 5.1431∠0.8692 0.4856 28 1 36.4125∠ − 5.0029 0.4771

13 1 6.6639∠ − 0.6234 0.5951 29 1 11.5907∠ − 6.5602 0.6842

14 1 10.6357∠ − 2.6139 0.5870 30 1 14.0783∠ − 3.5431 0.9723

15 1 5.0176∠ − 2.6889 0.8266 31 1 1.5847∠−6.4193 0.8291

16 1 2.4591∠ − 4.0906 0.5432 32 1 9.1922∠ − 3.3820 0.9717
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Table 9. The nodes energy transmissions (δk) of the synthesized pattern for K = 64 and R = 6m.

Nodes energy transmissions (δk)

k Ordinary Proposed Algorithm GA k Ordinary Proposed Algorithm GA

33 1 2.3079∠ − 6.8117 0.1726 49 1 3.9142∠ − 11.3588 0.7557

34 1 16.5709∠ − 7.0848 0.9876 50 1 20.7471∠ − 12.0369 0.9212

35 1 36.6102∠ − 6.6202 0.7685 51 1 28.2178∠ − 10.1590 0.8000

36 1 28.5454∠ − 9.2038 0.7136 52 1 8.9211∠ − 12.0014 0.8768

37 1 25.1721∠ − 5.8573 0.9249 53 1 11.8328∠ − 11.4923 0.3159

38 1 12.5651∠ − 6.6190 0.9840 54 1 5.1548∠−11.3130 0.2939

39 1 1.5942∠ − 7.0245 0.2941 55 1 20.9906∠ − 12.3521 0.6820

40 1 20.2395∠ − 6.8799 0.9397 56 1 2.2180∠ − 12.3755 0.0664

41 1 24.6302∠ − 9.6349 0.3558 57 1 5.0911∠ − 15.6113 0.2043

42 1 4.0354∠ − 7.8365 0.4616 58 1 4.2611∠ − 12.8152 0.2024

43 1 16.3730∠ − 9.4768 0.0829 59 1 26.4804∠−14.6527 0.6462

44 1 12.6796∠−9.5369 0.4293 60 1 3.0665∠ − 14.3484 0.1310

45 1 29.0337∠ − 10.6186 0.4842 61 1 29.6211∠ − 14.6274 0.0178

46 1 3.7763∠ − 9.7732 0.5034 62 1 2.4838∠ − 16.8718 0.6771

47 1 3.0559∠ − 11.5927 0.5997 63 1 26.0455∠−18.5841 0.8941

48 1 5.4749∠ − 14.6929 0.7557 64 1 11.4999∠ − 18.4030 0.7483

Table 10. The resultant maximum SLL, HPBW, and DRR of the proposed algorithm and the NSGA-
SD compared to the ordinary pattern for K = 8 and R = 4m.

Algorith Maximum SL HPBW DRR Execution time
Ordinary Pattern −4.63 dB 12.20◦ 1 –

Proposed Algorithm −10.37 dB 12.20◦ 3.0685 0.09438 sec
NSGA-SD [13] −6.61 dB 12.35◦ 2.0625 10 sec

Figure 10. The synthesized patterns using the proposed algorithm and the NSGA-SD compared to
the ordinary pattern for K = 8 and R = 4 m.
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Table 11. The polar coordinates (rk, ψk) and nodes transmission weights (vk) of the synthesized
pattern for K = 8 and R = 4m.

Polar coordinates Nodes transmissions weight (vk)
k rk ψk Ordinary Proposed Algorithm NSGA − SD
1 0 0 1∠0.12 1.2661∠ − 0.6484 0.53∠0.18
2 3.2755 0.5855 1∠1.31 0.5252∠0.5315 0.94∠1.10
3 3.1219 −0.343 1∠ − 0.69 0.4938∠−1.158 0.31∠ − 1.12
4 0.6868 0.8369 1∠0.10 1.5151∠0.8978 0.19∠0.05
5 2.8898 1.2064 1∠ − 1.73 1.1818∠−1.2798 0.76∠ − 1.03
6 2.7509 −1.545 1∠2.19 0.6784∠2.2068 0.56∠2.05
7 1.7605 0.0227 1∠ − 0.12 0.8861∠0.3869 0.97∠0.01
8 2.5911 1.4158 1∠0.04 1.1477∠ − 0.5825 0.72∠0.16

Figure 11. The maximum SLL versus K for R = 1 m.

Figure 12. The maximum SLL versus R for K = 16.
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5. CONCLUSION

In this paper, a fast deterministic distributed beamforming algorithm is proposed for maximum SLL
reduction of RAAs in wireless sensor networks. It controls the energy transmission δk or transmission
weight (vk) of each node without altering the nodes locations. The simulation results verify the
feasibility and effectiveness of the proposed algorithm compared to the recent state of the art GA
and NSGA-SD optimization based techniques. It provides the highest SLL reduction while maintaining
the same HPBW as the ordinary pattern. Furthermore, it is not time consuming which makes it suitable
for adaptive beamforming of distributed random antenna arrays.
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