Vol. 95
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-09-05
Shielding of a Perfectly Conducting Circular Disk: Exact and Static Analytical Solution
By
Progress In Electromagnetics Research C, Vol. 95, 167-182, 2019
Abstract
The problem of the shielding evaluation of an infinitesimally thin perfectly conducting circular disk against a vertical magnetic dipole is here addressed. The problem is reduced to a set of dual integral equations and solved in an exact form through the application of the Galerkin method in the Hankel transform domain. It is shown that a second-kind Fredholm infinite matrix-operator equation can be obtained by selecting a complete set of orthogonal eigenfunctions of the static part of the integral operator as expansion basis. A static solution is finally extracted in a closed form which is shown to be accurate up to remarkably high frequencies.
Citation
Giampiero Lovat, Paolo Burghignoli, Rodolfo Araneo, Salvatore Celozzi, Amedeo Andreotti, Dario Assante, and Luigi Verolino, "Shielding of a Perfectly Conducting Circular Disk: Exact and Static Analytical Solution," Progress In Electromagnetics Research C, Vol. 95, 167-182, 2019.
doi:10.2528/PIERC19052908
References

1. Bethe, H. A., "Theory of diffraction by small holes," Phys. Rev., Vol. 66, No. 7–8, 163, 1944.
doi:10.1103/PhysRev.66.163

2. Bouwkamp, C., "On the diffraction of electromagnetic waves by small circular disks and holes," Philips Research Reports, Vol. 5, 401-422, 1950.

3. Eggimann, W., "Higher-order evaluation of dipole moments of a small circular disk," IRE Trans. Microw. Theory Techn., Vol. 8, No. 5, 573-573, 1960.
doi:10.1109/TMTT.1960.1124796

4. Eggimann, W. H., "Higher-order evaluation of electromagnetic diffraction by circular disks," IRE Trans. Microw. Theory Techn., Vol. 9, No. 5, 408-418, 1961.
doi:10.1109/TMTT.1961.1125362

5. Williams, W., "Electromagnetic diffraction by a circular disk," Proc. Cambridge Phil. Soc., Vol. 58, No. 4, 625-630, Cambridge University Press, 1962.
doi:10.1017/S0305004100040664

6. Jones, D., "Diffraction at high frequencies by a circular disc," Proc. Cambridge Phil. Soc., Vol. 61, No. 1, 223-245, Cambridge University Press, 1965.
doi:10.1017/S0305004100038810

7. Marsland, D., C. Balanis, and S. Brumley, "Higher order diffractions from a circular disk," IEEE Trans. Antennas Propag., Vol. 35, No. 12, 1436-1444, 1987.
doi:10.1109/TAP.1987.1144034

8. Duan, D.-W., Y. Rahmat-Samii, and J. Mahon, "Scattering from a circular disk: A comparative study of PTD and GTD techniques," Proc. IEEE, Vol. 79, No. 10, 1472-1480, 1991.
doi:10.1109/5.104222

9. Nosich, A. I., "The method of analytical regularization in wave-scattering and eigenvalue problems: Foundations and review of solutions," IEEE Antennas Propag. Mag., Vol. 41, No. 3, 34-49, 1999.
doi:10.1109/74.775246

10. Bliznyuk, N. Y., A. I. Nosich, and A. N. Khizhnyak, "Accurate computation of a circular-disk printed antenna axisymmetrically excited by an electric dipole," Microw. Opt. Techn. Lett., Vol. 25, No. 3, 211-216, 2000.
doi:10.1002/(SICI)1098-2760(20000505)25:3<211::AID-MOP15>3.0.CO;2-D

11. Hongo, K. and Q. A. Naqvi, "Diffraction of electromagnetic wave by disk and circular hole in a perfectly conducting plane," Progress In Electromagnetics Research, Vol. 68, 113-150, 2007.
doi:10.2528/PIER06073102

12. Balaban, M. V., R. Sauleau, T. M. Benson, and A. I. Nosich, "Dual integral equations technique in electromagnetic wave scattering by a thin disk," Progress In Electromagnetics Research, Vol. 16, 107-126, 2009.
doi:10.2528/PIERB09050701

13. Hongo, K., A. D. U. Jafri, and Q. A. Naqvi, "Scattering of electromagnetic spherical wave by a perfectly conducting disk," Progress In Electromagnetics Research, Vol. 129, 315-343, 2012.
doi:10.2528/PIER11102805

14. Di Murro, F., M. Lucido, G. Panariello, and F. Schettino, "Guaranteed-convergence method of analysis of the scattering by an arbitrarily oriented zero-thickness PEC disk buried in a lossy half-space," IEEE Trans. Antennas Propag., Vol. 63, No. 8, 3610-3620, 2015.
doi:10.1109/TAP.2015.2438336

15. Nosich, A. I., "Method of analytical regularization in computational photonics," Radio Sci., Vol. 51, No. 8, 1421-1430, 2016.
doi:10.1002/2016RS006044

16. Lucido, M., G. Panariello, and F. Schettino, "Scattering by a zero-thickness PEC disk: A new analytically regularizing procedure based on Helmholtz decomposition and Galerkin method," Radio Sci., Vol. 52, No. 1, 2-14, 2017.
doi:10.1002/2016RS006140

17. Chew, W. C., Waves and Fields in Inhomogenous Media, IEEE Press, 1999.
doi:10.1109/9780470547052

18. Tango, W. J., "The circle polynomials of Zernike and their application in optics," Appl. Phys., Vol. 13, No. 4, 327-332, 1977.
doi:10.1007/BF00882606

19. Rdzanek, W., "Sound scattering and transmission through a circular cylindrical aperture revisited using the radial polynomials," J. Acoust. Soc. Am., Vol. 143, No. 3, 1259-1282, 2018.
doi:10.1121/1.5025159

20. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Product, 7th Ed., Academic Press, 2014.

21. Jackson, J. D., "Classical Electrodynamics," Wiley, 1999.

22. Eason, G., B. Noble, and I. N. Sneddon, "On certain integrals of Lipschitz-Hankel type involving products of Bessel functions," Phil. Trans. R. Soc. Lond. A, Vol. 247, No. 935, 529-551, 1955.
doi:10.1098/rsta.1955.0005

23. Reed, M. and B. Simon, Method of Modern Mathematical Physics, Vol. 1: Functional Analysis, Academic Press Inc., 1980.