Vol. 96
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-10-09
A Pure Cumulant-Based Method with Low Computational Complexity for Classification and Localization of Multiple Near and Far Field Sources Using a Symmetric Array
By
Progress In Electromagnetics Research C, Vol. 96, 123-138, 2019
Abstract
The authors propose a new method based on spatial cumulants for estimating the parameters of multiple near-field and far-field sources. The Toeplitz property used in some studies is not applicable to fourth-order statisticsto separate sources components. Therefore, in this paper, a method is proposed to computeoutput cumulants of specified sensors in special arrangements, by which the components of the near-field and the far-field sources are effectively separated using differencing. The angle and range estimations, as well as the classification of the sources, are obtained based on the data from two spatial cumulant matrices. One of them contains the angle information of all sources, and the other only contains the information of the near-field sources. The parameters extraction algorithm is based on the ESPRIT technique; therefore, the proposed method does not require any spectral search. This leads to a significant reduction in computational complexity. Unlike some approaches, the proposed method does not suffer from array aperture loss. Also, the parameters pairing procedure is done automatically. Analysis and simulation results confirm the good performance of the proposed method in terms of computational complexity, estimation accuracy, correct classification of signals, and aperture loss.
Citation
Amir Masoud Molaei, Ali Ramezani-Varkani, and Mohammad Reza Soheilifar, "A Pure Cumulant-Based Method with Low Computational Complexity for Classification and Localization of Multiple Near and Far Field Sources Using a Symmetric Array," Progress In Electromagnetics Research C, Vol. 96, 123-138, 2019.
doi:10.2528/PIERC19051002
References

1. Tuncer, T. E. and B. Friedlander, Classical and Modern Direction-of-Arrival Estimation, Academic Press, 2009.

2. Huang, Y.-D. and M. Barkat, "Near-field multiple source localization by passive sensor array," IEEE Transactions on Antennas and Propagation, Vol. 39, 968-975, 1991.
doi:10.1109/8.86917

3. Chen, J.-F., X.-L. Zhu, and X.-D. Zhang, "A new algorithm for joint range-DOA-frequency estimation of near-field sources," EURASIP Journal on Advances in Signal Processing, Vol. 2004, 105173, 2004.
doi:10.1155/S1110865704310152

4. Goh, S. T., S. A. R. Zekavat, and K. Pahlavan, "DOA-based endoscopy capsule localization and orientation estimation via unscented Kalman filter," IEEE Sensors Journal, Vol. 14, 3819-3829, 2014.
doi:10.1109/JSEN.2014.2342720

5. Tichavsky, P., K. T. Wong, and M. D. Zoltowski, "Near-field/far-field azimuth and elevation angle estimation using a single vector hydrophone," IEEE Transactions on Signal Processing, Vol. 49, 2498-2510, 2001.
doi:10.1109/78.960397

6. Jiang, J.-J., F.-J. Duan, J. Chen, Y.-C. Li, and X.-N. Hua, "Mixed near-field and far-field sources localization using the uniform linear sensor array," IEEE Sensors Journal, Vol. 13, 3136-3143, 2013.
doi:10.1109/JSEN.2013.2257735

7. Liang, J. and D. Liu, "Passive localization of mixed near-field and far-field sources using two-stage MUSIC algorithm," IEEE Transactions on Signal Processing, Vol. 58, 108-120, 2010.
doi:10.1109/TSP.2009.2029723

8. He, J., M. Swamy, and M. O. Ahmad, "Efficient application of MUSIC algorithm under the coexistence of far-field and near-field sources," IEEE Transactions on Signal Processing, Vol. 60, 2066-2070, 2012.
doi:10.1109/TSP.2011.2180902

9. Liu, G., X. Sun, Y. Liu, and Y. Qin, "Low-complexity estimation of signal parameters via rotational invariance techniques algorithm for mixed far-field and near-field cyclostationary sources localisation," IET Signal Processing, Vol. 7, 382-388, 2013.
doi:10.1049/iet-spr.2012.0394

10. Wang, B., Y. Zhao and J. Liu, "Mixed-order MUSIC algorithm for localization of far-field and near-field sources," IEEE Signal Processing Letters, Vol. 20, 311-314, 2013.
doi:10.1109/LSP.2013.2245503

11. Xie, J., H. Tao, X. Rao, and J. Su, "Passive localization of mixed far-field and near-field sources without estimating the number of sources," Sensors, Vol. 15, 3834-3853, 2015.
doi:10.3390/s150203834

12. Gao, F. and A. B. Gershman, "A generalized ESPRIT approach to direction-of-arrival estimation," IEEE Signal Processing Letters, Vol. 12, 254-257, 2005.
doi:10.1109/LSP.2004.842276

13. Liu, G. and X. Sun, "Efficient method of passive localization for mixed far-field and near-field sources," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 902-905, 2013.
doi:10.1109/LAWP.2013.2273451

14. Liu, G. and X. Sun, "Spatial differencing method for mixed far-field and near-field sources localization," IEEE Signal Processing Letters, Vol. 21, 1331-1335, 2014.
doi:10.1109/LSP.2014.2326173

15. Liu, G. and X. Sun, "Two-stage matrix differencing algorithm for mixed far-field and near-field sources classification and localization," IEEE Sensors Journal, Vol. 14, 1957-1965, 2014.
doi:10.1109/JSEN.2014.2307060

16. Zhi, W. and M. Y.-W. Chia, "Near-field source localization via symmetric subarrays," 2007 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’07, II-1121-II-1124, 2007.
doi:10.1109/ICASSP.2007.366437

17. Xie, J., L. Wang, and J. Su, "Parameters estimation of mixed far-field and near-field sources via second order statistics," 2017 International Applied Computational Electromagnetics Society Symposium (ACES), 1-2, 2017.

18. Zheng, Z., J. Sun, W.-Q. Wang, and H. Yang, "Classification and localization of mixed near-field and far-field sources using mixed-order statistics," Signal Processing, Vol. 143, 134-139, 2018.
doi:10.1016/j.sigpro.2017.08.025

19. Zheng, Z., M. Fu, D. Jiang, W.-Q. Wang, and S. Zhang, "Localization of mixed far-field and near-field sources via cumulant matrix reconstruction," IEEE Sensors Journal, Vol. 18, 7671-7680, 2018.
doi:10.1109/JSEN.2018.2863749

20. Liang, J., "Joint azimuth and elevation direction finding using cumulant," IEEE Sensors Journal, Vol. 9, 390-398, 2009.
doi:10.1109/JSEN.2009.2014416

21. Begriche, Y., M. Thameri, and K. Abed-Meraim, "Exact Cramer Rao bound for near field source localization," 2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA), 718-721, 2012.
doi:10.1109/ISSPA.2012.6310646

22. Grosicki, E., K. Abed-Meraim, and Y. Hua, "A weighted linear prediction method for near-field source localization," IEEE Transactions on Signal Processing, Vol. 53, 3651-3660, 2005.
doi:10.1109/TSP.2005.855100

23. Yuen, N. and B. Friedlander, "Performance analysis of higher order ESPRIT for localization of near-field sources," IEEE transactions on Signal Processing, Vol. 46, 709-719, 1998.
doi:10.1109/78.661337

24. Duofang, C., C. Baixiao, and Q. Guodong, "Angle estimation using ESPRIT in MIMO radar," Electronics Letters, Vol. 44, 770-771, 2008.
doi:10.1049/el:20080276

25. Liu, F., J. Wang, C. Sun, and R. Du, "Spatial differencing method for DOA estimation under the coexistence of both uncorrelated and coherent signals," IEEE Transactions on Antennas and Propagation, Vol. 60, 2052-2062, 2012.
doi:10.1109/TAP.2012.2186216

26. Golub, G. H. and C. F. Van Loan, Matrix Computations, Vol. 3, JHU Press, 2012.

27. Paulraj, A., Subspace Methods for Direction of Arrival Estimation, Handbook of Statistics, 10 Eds.Bose NK and Rao, CR, North-Holland, ed., 1993.

28. Molaei, A. M., B. Zakeri, and S. M. H. Andargoli, "Closed-form expression of stochastic crb for mixed near-field and far-field sources in multipath propagation environments," IEEE Communications Letters, Vol. 23, 640-643, 2019.
doi:10.1109/LCOMM.2019.2896083