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A Pure Cumulant-Based Method with Low Computational
Complexity for Classification and Localization of Multiple Near

and Far Field Sources Using a Symmetric Array

Amir Masoud Molaei1, *, Ali Ramezani Varkani2, and Mohammad Reza Soheilifar2

Abstract—The authors propose a new method based on spatial cumulants for estimating the
parameters of multiple near-field and far-field sources. The Toeplitz property used in some studies
is not applicable to fourth-order statistics to separate sources components. Therefore, in this paper, a
method is proposed to compute output cumulants of specified sensors in special arrangements, by which
the components of the near-field and the far-field sources are effectively separated using differencing.
The angle and range estimations, as well as the classification of the sources, are obtained based on the
data from two spatial cumulant matrices. One of them contains the angle information of all sources,
and the other only contains the information of near-field sources. The parameters extraction algorithm
is based on the ESPRIT technique; therefore, the proposed method does not require any spectral
search. This leads to a significant reduction in computational complexity. Unlike some approaches,
the proposed method does not suffer from array aperture loss. Also, the parameters pairing procedure
is done automatically. Analysis and simulation results confirm the good performance of the proposed
method in terms of computational complexity, estimation accuracy, correct classification of signals, and
aperture loss.

1. INTRODUCTION

The direction-of-arrival (DOA) estimation is one of the practical and progressive applications in the
field of array signal processing. The main purpose of the DOA estimation is to find the direction of the
signals impinging on an antenna array [1]. These signals can be electromagnetic or acoustic waves. The
necessity of locating and tracking signal sources in military and civilian applications (such as search
and rescue, sonar, seismology, and wireless emergency call locating) shows the importance of DOA
estimation. An array can be designed to detect incoming signals so that it only accepts signals from
certain directions and rejects ones that are declared as interference.

In many array processing applications, the wave-front is assumed to be planar; in other words, the
sources are located in the far-field (FF) of the array. In this case, the task of locating the source is limited
to estimating DOAs only. Although plane wave assumption can simplify modeling and processing, such
a hypothesis is not valid in practical applications of near-field (NF), as a result, will lead to error in the
analysis. When the source is located in the NF or in the Fresnel region of the array aperture, the shape
of the spherical wave-front varies nonlinearly with the array position and is characterized by the angle
and the range parameters [2]. As a result, the conventional DOA estimation algorithms for far-field
sources (FFSs) are not applicable to localization of near-field sources (NFSs). In addition, in some
practical applications such as seismic exploration [3], electronic supervision [4], speaker localization
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using a microphone array, and guidance system [5, 6], any source can be located in FF or NF. Under
such circumstances, conventional methods are encountered with serious drawbacks, since these methods
inherently require pure FF or NF signals. Accordingly, in recent years, there has been growing interest
in the issue of mixed sources localization.

An efficient method for localization of mixed FFSs and NFSs was first proposed by a two-stage
MUSIC algorithm [7], using fourth-order cumulants (FOCs) and spectral search. An algorithm called
oblique projection MUSIC was proposed in [8] using second-order statistics (SOS). In [9], an ESPRIT-
MUSIC-like method has been developed based on the third-order cyclic moment. Despite the relatively
less computational complexity, the reduced range estimation accuracy and some limiting hypotheses
are considered as disadvantages in the work [9]. The authors of the study [10] extended the array
aperture by using a sparse linear array. Compared to previous algorithms, research [10] has a moderate
computational complexity and higher resolution and also has improved the estimation accuracy of
parameters. However, it suffers from the problem of spurious peaks concerning range estimation. A
method based on constructing spatial-temporal cumulants is presented in [11], which does not need to
know the number of sources. Based on the generalized ESPRIT (GESPRIT) algorithm [12], several
methods have been proposed to localize mixed sources [6, 13–15]. Compared to other SOS-based
methods, the algorithm [13] has improved the estimation accuracy and also made a more reasonable
classification of signals types. The covariance differencing method presented in [14, 15] provides a
reasonable classification. For GESPRIT-based algorithms, the maximum number of resolvable NFSs is
less than half of the array’s sensors [16]. In [17], an SOS-based method is proposed to estimate the DOA,
range, and frequency parameters, which avoids multi-dimensional spectral search. The use of the mixed
second and fourth order statistics with applying the MUSIC technique is considered in research [18],
which provides a reasonable classification. However, it sets strict limits on the DOA intervals of incoming
signals. In the study [19], a mixed order statistics method based on cumulant matrix reconstruction
and the use of MUSIC spectrum has been presented, which provides good accuracy.

All of the above methods require heavy computations of spectral search. In addition, the
methods [7, 11, 18, 19] have a higher computational burden due to the construction of fourth-order
statistics (FOS) matrices along with spectral search. On the other hand, the aperture loss that appears
in works [6, 8, 9, 14, 15, 19] is another issue that should be considered about the number of sensors. Also,
in the case of NFSs, in addition to the DOA and range estimations, the pairing between these two
parameters should also be made. The differencing operation presented in [14, 15] is valid only for SOS,
and according to what we will show in the text, for FOS-based methods, the Toeplitz property will no
longer help to separate the FF and NF components.

What will be presented in this paper is an algorithm that, in addition to efficient separation of
the FF and NF components in the cumulant domain, estimates the parameters of the mixed NFSs and
FFSs without the need for a pairing process and with the lowest aperture loss. The use of high-order
statistics, in addition to increasing the estimation accuracy, also allows saving the number of sensors [20].
In addition, FOCs are not sensitive to any kind of Gaussian noise. In the proposed method, the signals
are received by a symmetric uniform linear array (ULA). Five special cumulants are defined, and five
corresponding matrices are constructed based on the received data. The first matrix only contains
the angle information, and the sources’ DOAs are extracted from it. Four other matrices, pairwise,
contain common FF information. By two differencing operations, FFSs information is eliminated. The
information needed to classify sources and estimate the NFSs parameters is obtained by providing an
ESPRIT-based method.

The rest of this paper is organized as follows. In Section 2, the mathematical model of the data
and main assumptions are expressed. In Section 3, the proposed algorithm is completely explained.
Section 4 deals with the performance analysis of the proposed algorithm. Simulations and their results
are presented in Section 5. Conclusions are given in Section 6. Also, details of some equations and
proofs are given in the Appendix.

Notation: Throughout the paper, superscripts T , H, and ∗ represent the transpose, conjugate
transpose, and complex conjugate, respectively. Symbols x̂, E{x}, and �x� stand for the estimation,
mathematical expectation, and floor of x, respectively. Jx×y represents the matrix of ones of size x× y.
j is the imaginary unit.
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2. DATA MODEL

ConsiderN uncorrelated narrowband sources includingNN NFSs andNF FFSs. The signals transmitted
by these sources impinge on a symmetric ULA consisting of 2M + 1 sensors with element spacing
d from the directions θ1, θ2, . . . , θN (Fig. 1). Each element is denoted by an index l, where l =
−M, . . . , 0, . . . , M . The array steering vector for the ith incoming signal and the lth sensor is defined
by

ali = ejTli (1)

where Tli refers to the phase shift related to the ith signal due to the propagation time delay between
the reference sensor and the lth sensor, and i = 1, 2, . . . , N . Considering the array center as the phase
reference, if the ith source is located in the NF, then Tli can be approximated as [7, 15, 21]

Tli ≈ γil + φil
2 (2)

where the electric angles γi and φi are derived as follows:

γi = −2π
d

λ
sin θi, φi = π

d2

λri
cos2 θi (3)

where λ is the wavelength, and ri is the range of the ith source. On the other hand, if the ith source is
located in the FF (ri → ∞), then Tli can be considered as [7, 15]

Tli ≈ γil. (4)

Figure 1. A symmetric ULA consisting of 2M + 1 sensors.

With a proper sampling rate, the kth sample of the signal observed by the lth sensor is expressed
as [22]

xl (k) =
N∑
i=1

si (k) e
jTli + nl (k) , k = 1, . . . , Ns (5)

where Ns, si(t), and nl(t) are the number of snapshots, signal of the ith source, and noise of the lth
sensor, respectively. Without the loss of generality, we assume that the first NN signals are received
from the NF and the remaining signals from the FF, so Eq. (5) can be rewritten as

xl (k) =

NN∑
i=1

si (k) e
j(γil+φil

2) +
N∑

i=NN+1

si (k) e
jγil + nl (k) . (6)

In matrix form, the array output vector is expressed as

x (k) = As (k) + n (k) (7)

whose vectors and matrices are determined by

x (t) = [x−M (t) . . . x0 (t) . . . xM (t)]T

s (t) =
[
sTN (t) sTF (t)

]T
sN (t) = [s1 (t) s2 (t) . . . sNN

(t)]T

sF (t) = [sNN+1 (t) sNN+2 (t) . . . sN (t)]T

n (t) = [n−M (t) . . . n0 (t) . . . nM (t)]T

(8)
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where sN (t) ∈ C
NN×1, sF (t) ∈ C

NF×1 and n(t) ∈ C
(2M+1)×1 are the source vector of the NF and FF

signals, and the additive Gaussian noise vector with mean zero. A ∈ C
(2M+1)×N is the steering matrix

and can be written as
A = [AN AF ] , AN = [a1 a2 . . . aNN

]

AF = [aNN+1 . . . aN ] , ai = [a−Mi a−M+1i . . . aMi]
T (9)

where ali can be determined by Eqs. (1), (2), and (4).
The following basic hypotheses are assumed to hold:

1- The array is calibrated, and the matrix A is full rank.

2- The signals {si(t)}Ni=1 are statistically mutually independent, narrowband stationary processes with
nonzero kurtosis.

3- Sensor noise is the additive (white or color) Gaussian one and statistically independent of sources
signals.

4- The sensor array is a ULA arranged by element spacing d ≤ λ/4, in order to avoid the phase
ambiguity [23].

5- The number of elements satisfies both 2M + 1 > N and 2M + 1 ≥ NN + 2.

6- Signals’ DOAs are different.

3. PROPOSED METHOD

In this section, first, some special cumulant matrices are defined. The proposed method is then fully
explained.

3.1. Definition and Construction of Special Cumulant Matrices

Since the proposed method uses FOS, we consider five cross-cumulant functions c4x, 1(ū, v̄), c4x, 2(u, v),
c4x, 3(u, v), c4x, 4(u, v) and c4x, 5(u, v) for the array output stationary signals with a common zero time
lag and different sensor lags in the following form:

c4x, 1 (ū, v̄) = Cum
{
x∗ū (k) , xv̄ (k) , x

∗
−v̄ (k) , x−ū (k)

}
c4x, 2 (u, v) = Cum

{
x∗u (k) , xu+1 (k) , x

∗
v+1 (k) , xv (k)

}
c4x, 3 (u, v) = Cum {x∗u (k) , xu+1 (k) , x

∗
v (k) , xv−1 (k)}

c4x, 4 (u, v) = Cum
{
x∗u−1 (k) , xu (k) , x

∗
−v (k) , x1−v (k)

}
c4x, 5 (u, v) = Cum

{
x∗u (k) , xu+1 (k) , x

∗
−v (k) , x1−v (k)

}
(10)

where ū, v̄ ∈ [−M, M ] and u, v ∈ [−M + 1, M − 1]. According to assumptions 2 and 3, the result of
the cumulants of Eq. (10) can be written as (see Appendix A for more details)

c4x, 1 (ū, v̄) =
N∑
i=1

csie
−j2ūγiej2v̄γi

c4x, 2 (u, v) =

NN∑
i=1

csie
j2uφie−j2vφi +

N∑
i=NN+1

csi

c4x, 3 (u, v) =

NN∑
i=1

csie
j2(u+1)φie−j2vφi +

N∑
i=NN+1

csi

c4x, 4 (u, v) =

NN∑
i=1

csie
j2uφie−j2vφiej2γi +

N∑
i=NN+1

csie
j2γi

c4x, 5 (u, v) =

NN∑
i=1

csie
j2(u+1)φie−j2vφiej2γi +

N∑
i=NN+1

csie
j2γi

(11)
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where csi = Cum{s∗i (t), si(t), s∗i (t), si(t)} is the kurtosis related to the ith signal. According to Eq. (11)
and by collecting all sensor lags, we can construct the complex cross-cumulant matrices of the sensors
in the following form:

C1 = BCsB
H , C2 = DCsD

H , C3 = DΦCsD
H

C4 = DΥCsD
H , C5 = DΦΥCsD

H .
(12)

Equation (13) gives the value of the
(
�
u,

�
v
)
th element of matrix C1 according to the definitions

�
u = ū + M + 1 and

�
v = v̄ + M + 1. Also, by defining ũ = u + M and ṽ = v + M , the (ũ, ṽ)th

element of matrices C2, C3, C4, and C5 can be obtained from Eq. (13) (see Appendix A for their
practical estimation)

C1

(
�
u,

�
v
)
= Cum

{
x∗�
u
(t) , x�

v
(t) , x∗

N−�
v+1

(t) , x
N−�

u+1
(t)
}

C2 (ũ, ṽ) = Cum
{
x∗ũ+1 (t) , xũ+2 (t) , x

∗
ṽ+2 (t) , xṽ+1 (t)

}
C3 (ũ, ṽ) = Cum

{
x∗ũ+1 (t) , xũ+2 (t) , x

∗
ṽ+1 (t) , xṽ (t)

}
C4 (ũ, ṽ) = Cum

{
x∗ũ (t) , xũ+1 (t) , x

∗
M−ṽ (t) , xM+1−ṽ (t)

}
C5 (ũ, ṽ) = Cum

{
x∗ũ+1 (t) , xũ+2 (t) , x

∗
M−ṽ (t) , xM+1−ṽ (t)

}
(13)

where
�
u,

�
v ∈ [1, 2M + 1] and ũ, ṽ ∈ [1, 2M − 1]. Therefore, the first matrix of Eq. (12) is of size

(2M + 1) × (2M + 1), and the last four matrices are of size (2M − 1) × (2M − 1). Cs ∈ R
N×N ,

Υ ∈ C
N×N and Φ ∈ C

N×N are the diagonal matrices defined in the following form:

Φ = diag
[
ej2φ1 , ej2φ2 , . . . , ej2φNN , 1, . . . , 1

]
Υ = diag

[
ej2γ1 , ej2γ2 , . . . , ej2γN

]
Cs = diag [cs1 , cs2 , . . . , csN ] .

(14)

In this way, B ∈ C
(2M−1)×N is obtained by

B =

⎡
⎢⎢⎢⎣

ej2(2M )γ1 ej2(2M)γ2 . . . ej2(2M)γN

ej2(2M−1)γ1 ej2(2M−1)γ2 . . . ej2(2M−1)γN

...
...

. . .
...

1 1 . . . 1

⎤
⎥⎥⎥⎦ . (15)

Also, matrix D ∈ C
(2M−1)×N is of rank NN + 1 (according to assumption 6), in which the elements

of the last NF columns are equal to 1, and the elements of the first NN columns contain information
about φi. D is obtained by

D =
[
DN J(2M−1)×NF

]

DN =

⎡
⎢⎢⎢⎣

1 . . . 1
ej2φ1 . . . ej2φNN

...
. . .

...

ej2(2M−2)φ1 . . . ej2(2M−2)φNN

⎤
⎥⎥⎥⎦ . (16)

3.2. Sources’ DOA Estimation

In the proposed method, the information of the last four matrices of Eq. (12) alone is not sufficient to
find the DOA of the FFSs and to classify the signals types. The first matrix only contains the DOA
information, which we only use in this section.

We form two overlapping matrices C 11 ∈ C
2M×(2M+1) and C 12 ∈ C

2M×(2M+1) as

C11 = B1CsB
H , C12 = B2CsB

H (17)
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where C 11 and C 12 consist of the first 2M and the last 2M rows of the Hermitian matrix C 1,
respectively. B1 ∈ C

2M×N and B2 ∈ C
2M×N , respectively, include the first 2M and the last 2M

rows of B, and they hold the following equation:

B2 = B1ψ (18)

where ψ = diag[e−j2γ1 , . . . , e−j2γN ] contains the angle information of all sources. According to
assumptions 5 and 6, B1 and BH are full column and full row rank, respectively. We form the angle
estimation matrix as

CA =
(
CH

11C 11

)−1
CH

11C 12 =
(
BHB

)−1
BHψB. (19)

By applying the eigenvalue decomposition (EVD) to CA, we have

CA = UΣU−1 (20)

where Σ = diag[σ1, . . . , σ2M+1] is a diagonal matrix with the eigenvalues arranged as |σ1| ≥ . . . ≥
|σN | > |σN+1| > . . . > |σ2M+1|. A part of U ∈ C

(2M+1)×(2M+1) contains N eigenvectors related to
eigenvalues σ1, . . . , σN , which spans the signal subspace of CA.

The sources’ DOAs can easily extract from Eq. (21)

θ̂i = arcsin

(
λ∠σi
4πd

)
, i = 1, . . . , N (21)

where σi = e−j2γ̂i . We define the angles estimation vector as θ̂ = [θ̂1, . . . , θ̂N ]. Equation (21) alone
cannot determine which DOAs belong to NFSs and which belong to the FFSs.

3.3. NF and FF Components Separation by Differencing in the Cumulant Domain

In this section, a new method is proposed for separating the components of the NF and the FF in the
cumulant domain. With respect to Eq. (13), each of the last four matrices in Eq. (12) can be written
as the sum of two cumulant matrices, one containing only the information of the NF components, and
the other one only contains FF information, namely

C2 = CN1 +CF1, C3 = CN2 +CF1

C4 = CN3 +CF2, C5 = CN4 +CF2.
(22)

According to Appendix B, both NF and FF parts of the above matrices are Toeplitz. Therefore,
the use of algorithms such as [14, 15], which take advantage of being Toeplitz of the FF covariance
matrix and being non-Toeplitz of the NF covariance matrix for the separation of components, cannot
be implemented here for FOS.

Now, by simple differencing between the pair of matrices C2, C3 and C4, C5, we have

C32 = C3 −C2 = CN2 −CN1

C54 = C5 −C4 = CN4 −CN3.
(23)

The matrices C32 ∈ C
(2M−1)×(2M−1) and C54 ∈ C

(2M−1)×(2M−1) only contain the information of the
NF components and are given in Eq. (24).

C32=j2 ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cs1e
jφ1 sinφ1 + . . .

+csNN
ejφNN sinφNN

. . .
cs1e

−j(4M−5)φ1 sinφ1 + . . .

+csNN
e−j(4M−5)φNN ejφNN sinφNN

cs1e
j3φ1 sinφ1 + . . .

+csNN
ej3φNN sinφNN

. . .
cs1e

−j(4M−7)φ1 sinφ1 + . . .

+csKN
e−j(4M−7)φNN sinφNN

...
. . .

...
cs1e

j(4M−3)φ1 sinφ1 + . . .

+csNN
ej(4M−3)φNN sinφNN

. . .
cs1e

jφ1 sinφ1 + . . .

+csNN
ejφNN sinφNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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C54=j2 ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cs1e
jφ1ej2γ1 sinφ1 + . . .

+csKN
ejφNN ej2γNN sinφNN

. . .
cs1e

−j(4M−5)φ1ej2γ1 sinφ1 + . . .

+csNN
e−j(4M−5)φNN ejγNN sinφNN

cs1e
j3φ1ej2γ1 sinφ1 + . . .

+csNN
ej3φNN ej2γNN sinφNN

. . .
cs1e

−j(4M−7)φ1ej2γ1 sinφ1 + . . .

+csKN
e−j(4M−7)φNN ejγNN sinφNN

...
. . .

...

cs1e
j2(2M−1)φ1ej2γ1 sinφ1 + . . .

+csKN
ej2(2M−1)φNN ej2γNN sinφNN

. . .
cs1e

j2φ1ej2γ1 sinφ1 + . . .

+csNN
ej2φNN ejγNN sinφNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(24)

In this way, we are able to separate the pure NF components from the entire data in the cumulant
domain. In the next section, we will use this information to estimate the range and DOA of NFSs.

3.4. NFSs DOA Identification and Range Estimation

In the previous section, we showed how we can obtain pure NF information from the observed data using
the cumulant differencing. The difference matrices C32 andC54 can be decomposed as the multiplication
of matrices DN , CsN , ΦN , and ΥN as

C32 = DNΦNCsNDH
N , C54 = DNΦNΥNCsNDH

N (25)

where CsN , ΦN , ΥN ∈ C
NN×NN are derived from Eq. (26)

CsN = diag
[
cs1 , cs2 , . . . , csNN

]
ΦN = j2 · diag

[
ejφ1 sinφ1, e

jφ2 sinφ2, . . . , e
jφNN sinφNN

]
ΥN = diag

[
ej2γ1 , ej2γ2 , . . . , ej2γNN

]
.

(26)

Given assumptions 1 and 6, in order for DN to be a full column rank matrix, it is necessary and sufficient
that the number of sensors satisfies 2M + 1 ≥ NN + 2; this condition corresponds to assumption 5.

The two equations expressed in Eq. (25) can be considered as the basic equations of ESPRIT [24].

Therefore, we define the NF parameters estimation matrix CN ∈ C
(2M−1)×(2M−1) as

CN = C32

(
CH

54C54

)−1
CH

54. (27)

According to assumption 5, DN is full column rank, and it can easily be shown that DH
N ∈ C

NN×(2M−1)

is a full row rank matrix [25]. On the other hand, according to assumption 2, CsN has no zero singular
value, and there are no two identical elements on the main diagonal ofΦN andΥN (except for θ = ±90◦).
Therefore, we can rewrite Eq. (27) as

CN = DNΥ−1
N

(
DH

NDN

)−1
DH

N (28)

where BH†
N is full column rank.

Given that DN is full column rank, to estimate the electric angles of the NFSs, we need to apply
EVD to CN

CN = QΛQ−1 = [q1, . . . , q2M−1] diag [μ1, . . . , μ2M−1] [q1, . . . , q2M−1]
−1 (29)

where Λ ∈ C
(2M−1)×(2M−1) is a diagonal matrix with eigenvalues arranged as μ1 ≥ . . . ≥ μN > μN+1 =

. . . = μ2M−1 = 0, and Q ∈ C
(2M−1)×(2M−1) is the matrix of eigenvectors with column vectors qi′

(i′ = 1, . . . , 2M − 1). NN non-zero eigenvalues (from N non-zero eigenvalues) obtained from the EVD
of CN give an estimate of the diagonal elements of the matrix Υ−1

N (that is e−j2γ̂i , i = 1, . . . , NN )
containing the information of the NFSs’ DOA. Therefore, we can choose the NFSs’ DOAs from the
values estimated by Eq. (30)

ϑ̂i = arcsin

(
λ∠μi

4πd

)
, i = 1, 2, . . . , N (30)
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NN common values between the ϑ̂is in Eq. (30) and the angles estimated in θ̂ are considered as valid

DOAs of the NFSs, which form the vector θ̂N ∈ R
1×KN . The rest of the elements of vector θ̂ are

considered as DOAs of the FFSs.
On the other hand, the NN eigenvectors qi′ (i

′ = 1, . . . , NN ), corresponding to the valid ϑ̂is, can
give an estimate of DN . By dividing the elements of the m + 1th row of qi′ by the corresponding
elements of the mth row (m = 1, . . . , 2M − 3), we can extract an estimate of φi′ as

φ̂i′ =
1

2
� 1

2M − 3

2M−3∑
m=1

qm+1, i′

qm, i′
, i′ = 1, . . . , NN (31)

where qm, i′ is the element of the mth row of qi′ . Given Eqs. (3) and (31), we can calculate the NFSs’
range by

r̂i′ =
πd2 cos

(
θ̂i′
)

λφ̂i′
, i′ = 1, . . . , NN (32)

where θ̂i is the mth member of θ̂N .

4. ANALYSIS AND DISCUSSION

In this section, we analyze and discuss the proposed algorithm from four ways including computational
complexity, aperture loss, parameters pairing, and NFS localization at the same angle with the FFS.

4.1. Computational Complexity

Here, we compare computational complexity [26] of the proposed method, considering the major
multiplications.

The method [7] requires constructing two fourth-order matrices with dimensions (2M + 1) ×
(2M + 1) and (4M + 1)×(4M + 1), applying EVD to them, and performing the one-dimensional MUSIC
spectral search for direction estimation. In addition, the range estimation requires N times the EVD
implementation on matrices of size (8M + 5)× (8M + 5). Therefore, the number of operations required
in the work [7] is equal to

9 (2M + 1)2Ns+9 (4M + 1)2 Ns+
4

3
(2M + 1)3+

4

3
(4M + 1)3+

4

3
N (8M + 5)3+

180

Δθ
(2M + 1)2 (33)

where Δθ is the angle search step in degree.
The method [8] involves the construction of one covariance matrix of size (2M + 1)× (2M + 1) and

another covariance matrix of size (M + 2)× (M + 2) (by selecting �M+1
2 � as the number of overlapping

subvectors), applying EVD to them, spectral search implementation for the DOA estimation, and N
times the spectral search implementation for range. Therefore, the number of operations required in [8]
is equal to

(2M + 1)2Ns + (M + 2)2Ns +
4

3
(2M + 1)3 +

1

3
(M + 2)3

+
180

Δθ
(2M + 1)2 +N

2D2
/
λ− 0.62

√
D3
/
λ

Δr
(2M + 1)2 (34)

where Δr is the range search step in terms of wavelength.
The method [15] constructs one (2M + 1)× (2M + 1) covariance matrix, computes its SVD, along

with the SVD of the covariance difference matrix (with dimension (2M + 1) × (2M + 1)) and the FF
matrix (with dimension (2M + 1)× (2M + 1)). In addition, two spectral searches for the angle and NN

times spectral search for the range are required. Therefore, the sum of multiplications in [15] is equal
to

(2M + 1)2 Ns + 4 (2M + 1)3 +
720

Δθ
M2 +

180

Δθ
(2M + 1)2 +NN

2D2
/
λ− 0.62

√
D3
/
λ

Δr
(2M + 1)2 . (35)
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The method [11] constructs L cumulant matrices and one covariance matrix with dimensions (2M + 1)×
(2M + 1). Also, it constructs two other matrices, one with dimension (2M + 1)×(2M + 1) (requiring the
product of L cumulant matrices with their Hermitian) and the other one with dimension (2M + 1)×L
(requiring the product of L cumulant matrices with the virtual steering vector). It also requires an
EVD (on a L×L matrix) in the process of finding the DOA and an EVD on the covariance matrix. In
addition, spectral searches for finding direction and range are also a part of its implementation process.
Therefore, the number of operations required in [11] is equal to

(9L+ 1) (2M + 1)2 Ns + 2L (2M + 1)2 (M + 1) +
4

3
(2M + 1)3 +

4

3
L3

+
180

Δθ
(2M + 1)2 +N

2D2
/
λ− 0.62

√
D3
/
λ

Δr
(2M + 1)2 . (36)

The method [18] constructs one (2M + 1)× (2M + 1) covariance matrix and one cumulant matrix
of the same size. Also, it constructs one FF cumulant matrix. Furthermore, it requires an EVD on the
covariance matrix and an EVD on the NF cumulant matrix. In addition, spectral searches for finding
the direction of both NFSs and FFSs, and range estimation are also a part of its implementation process.
Therefore, the number of operations required in [18] is equal to

10 (2M + 1)2Ns +N (2M + 1)2 +
8

3
(2M + 1)3

+
360

Δθ
(2M + 1)2 +NN

2D2
/
λ− 0.62

√
D3
/
λ

Δr
(2M + 1)2 . (37)

The method [19] constructs one (2M + 1)× (2M + 1) covariance matrix and one cumulant matrix
of the same size. It also implements their EVD and performs EVD on the NF cumulant matrix. In
addition, spectral searches for finding both direction and range are also a part of its implementation
process. Therefore, the number of operations required in [19] is equal to

10 (2M + 1)2 Ns + 4 (2M + 1)3 +
360

Δθ
(2M + 1)2 +NN

2D2
/
λ− 0.62

√
D3
/
λ

Δr
(2M + 1)2 . (38)

In the proposed method, four FOC matrices with dimensions (2M − 1)× (2M − 1) and one (2M + 1)×
(2M + 1) FOC matrix are constructed from the received data. It also requires the construction of
matrices CA and CN , in which pseudo-inversion operations are computed for them. The EVD is
applied on CA of size (2M + 1)× (2M + 1) and on CN of size (2M − 1)× (2M − 1). It does not require
any search process. Therefore, the number of operations required in the proposed method is equal to

36 (2M − 1)2Ns + 9 (2M + 1)2Ns + 2
(
(2M + 1)3 + (2M − 1)3

)
+ 2M (2M + 1)2 + (2M − 1)3 . (39)

In general, it can be concluded that in terms of statistics matrices construction, the methods [15]
and [8] have the least complexity, and the most one belongs to the method [11]. In terms of eigen
decomposition, the proposed method and method [8] have the lowest computations, and method [7] has
the highest one. In terms of spectral search, only the proposed method has no processing stage, and
other methods (especially for small search steps) require significant processing burden.

4.2. Aperture Loss

The method [7] that is based on MUSIC technique constructs two (2M + 1)×(2M + 1) and (4M + 1)×
(4M + 1) matrices. Given the subspace theory [27], it requires at least one eigenvector of the matrices
to span the noise subspace. So method [7] is able to resolve at most 2M sources. In method [8] due
to the generation of the overlapping subvectors, a 50% array aperture loss occurs, and the maximum
number of resolvable sources is equal to M . In method [15], the parameters of NFSs and FFSs are
estimated through two distinct processes. Having NN NFSs, at least 2NN +1 sensors are required. The
method [15], in total, is able to resolve at most 2M sources. The method [11] does not require subspace
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decomposition; however, it requires to ensure that there exists a nonzero vector which is orthogonal to
the range space by all the virtual steering vectors except one of them. Such a condition only requires
to assume N ≤ 2M + 1, and in other words, method [11] can resolve 2M + 1 sources. The method [18]
can resolve at most 2M sources. In method [19], the signal subspace of the reconstructed matrix is
divided into two 2M × NN matrices. Therefore, it can locate 2M − 1 NFSs or 2M mixed sources at
most. According to the explanations given in Sections 3.2 and 3.4, about the constitution of B1 and
DN , it is necessary that the number of sensors simultaneously satisfy the conditions 2M + 1 ≥ NN + 2
and 2M + 1 > N because full column rank of them requires this. Therefore, in the proposed method,
the maximum number of resolvable sources is equal to 2M .

In general, it can be stated that in terms of avoiding aperture loss, the proposed method has much
better performance than the method [8] and is comparable with methods [7, 15, 18, 19].

4.3. Parameters Pairing

Since the DOA and the range of NFSs are both computed in parallel from eigenvalues and eigenvectors
of CN , the proposed method does not require any additional steps for pairing, and this operation is
performed automatically.

4.4. NFS Localization at the Same Angle with the FFS

When the NFS is located in the same angle with the FFS, none of the methods [7, 8, 11, 18, 19] is able to
estimate correctly. Given the structure of matrix B that contains virtual steering vectors and is merely
dependent on sources’ DOA, when two sources have the same angle, its rank is lost.

5. SIMULATION RESULTS

In this section, we present and discuss the simulation results to examine the performance of the
proposed method in dealing with mixed NFSs and FFSs. For all examples, an 11-elements (M = 5)
symmetric ULA with element spacing d = 0.25λ is assumed. All sources are equi-power, statistically
independent, and with narrowband stationary signals. The additive noise is assumed to be a spatial
white complex Gaussian random process. Angle and range search steps in different methods are assumed
0.01◦ and 0.05λ, respectively. We compare the estimation accuracy of the proposed method with the
methods [15, 18, 19], and also the related Cramer-Rao bound (CRB) [28]. The results are evaluated in
the estimated root mean square error (RMSE) derived from the average of NT independent Monte-Carlo
runs. The RMSE is defined as

RMSE =

√√√√ 1

NT

NT∑
n=1

(
ζ̂n − ζ

)2
(40)

where ζ̂n is an estimate of the parameter ζ in the nth experiment. Also, in terms of the probability of
correct classification of the signals types versus the signal-to-noise ratio (SNR) and snapshot number,
we compare the proposed method with other methods. We define the probability of correct classification
of the signals types as

Pc =
Nc

NT
(41)

where Nc is the number of successful classifications. If in a run, the regions of all the sources are
correctly determined, this means the correct classification in that execution.

Example 1: In the first simulation, we compare the probability of correct classification of the
signals types in the proposed method with other methods versus SNR and snapshot number for 500
independent runs. Two NFSs and one FFS are located at (θ1 = −7◦, r1 = 2.2λ), (θ2 = 51◦, r2 = 4λ)
and (θ3 = 22◦, r3 = ∞). Fig. 2 shows comparative results versus SNR and snapshot number. As seen,
in the proposed method, for SNRs above 9 dB (with 1000 snapshots), Pc is equal to 1, whereas this
probability is realized in methods [15, 18, 19] for SNRs above 31, 25, and 31 dB, respectively. This
indicates the superiority of the proposed method in the correct classification of the signals types. The
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(a) (b)

Figure 2. Comparative results of Pc; (a) versus SNR (Ns = 1000), (b) versus snapshot number (SNR
= 10 dB).

reason for the poor classification in method [15] is that it is based on the extraction of noise subspace
from the covariance difference matrix. The exact separation of the subspaces of this matrix without
the primary knowledge or without the correct estimation of the number of NFSs is a difficult task.
However, the proposed method does not need to know the number of NFSs or FFSs, and it performs
the classification based on the total information obtained from the vector θ̂ and Eq. (30).

Example 2: In the second test, the estimation accuracy of the proposed method is compared with
other methods and also the related CRB versus the SNR and snapshot number. Two NFSs and two FFSs
are located at (θ1 = 20◦, r1 = 1.6λ), (θ2 = 40◦, r2 = 2.9λ), (θ3 = 0◦, r3 = ∞) and (θ4 = −40◦, r4 = ∞).
The results are obtained from 500 independent trials. In the first case, the number of snapshots is fixed
to 750, and SNR varies from −10 to 20 dB. The results of this case are presented in Figs. 3(a) to 3(c). In
the second case, the SNR is fixed to 12 dB, and the snapshot number varies from 200 to 1400. The results
of this case are presented in Figs. 3(d) to 3(f). As Fig. 3 clearly shows, the diagrams obtained from the
proposed method are closer to the related CRBs than the diagrams obtained from the methods [15, 19].
It indicates the superiority of the proposed method in terms of accuracy. The proposed method also
has a competitive performance over the method [18]. Due to the use of pure cumulants in the proposed
method, with the reduction of the noise effect, it was expected that the accuracy of the proposed method
would be better than other methods. The DOA RMSEs for the two NFSs are approximately the same.
So according to the analysis of reference [23], in the range estimation, it was expected that the RMSE
of the first source would be less than the second one because it is closer to the array. Fig. 3 confirms
this.

Example 3: In the third simulation, we compare the computational complexity of the proposed
method with the other methods. Here all the assumptions of Example 2 are considered. Fig. 4 shows
the computational complexity of the proposed method in comparison with other methods versus the
snapshot number. As can be seen, for fewer and moderate snapshots, the proposed method has a much
lower total computational complexity than other methods. The elimination of the spectral search stage
is the main reason for this excellence. According to the analysis of Section 4.1, it is clear that as
the snapshots increase, the term related to the statistics matrices construction becomes the dominant
term, and the total complexity follows it. The dominant term in the computational complexity of
the method [15] is the spectral search that is independent of the snapshots. That is why the slope
of the associated diagram does not change significantly as the snapshot number increases. Since the
complexities of methods [18] and [19] are almost the same, their diagrams overlap. It is seen from Fig. 4
that, for 750 snapshots, the computational complexity of the proposed method is lower than the other
methods. However, Figs. 2 and 3 show that the proposed method, despite the lower computational
complexity, has been able to perform well in classification as well as estimation.

Example 4: In the last simulation, we examine the maximum number of resolvable
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sources in the proposed method. Let’s consider five NFSs located at (θ1 = −78◦, r1 = 2λ),
(θ2 = −15◦, r2 = 4.4λ), (θ3 = 6◦, r3 = 2.8λ), (θ4 = 17◦, r4 = 3.6λ) and (θ5 = 33◦, r5 = 5.2λ), and five
FFSs located at (θ6 = −51◦, r6 = ∞), (θ7 = −40◦, r7 = ∞), (θ8 = −30◦, r8 = ∞), (θ9 = 50◦, r9 = ∞)
and (θ10 = 66◦, r10 = ∞). Snapshot number and SNR are 1024 and 25 dB, respectively. Fig. 5 shows the
result of localization for 100 independent experiments. It also indicates the mean (standard deviation)
derived from DOA and range estimation for each source. Circles, triangles, lines, and pink dashed lines
respectively represent the true location of the NFSs, the true DOA of the FFSs, the true location vector
of the NFSs, and the true direction vector of the FFSs. The dots and black dashed lines represent the
estimated location of the NFSs and the average estimated direction vector of the FFSs, respectively.
As shown in Fig. 5, with 11 elements, we are able to detect the corresponding parameters of 10 sources,
which confirms the analysis of Section 4.2.

Figure 3.
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Figure 4. Comparison of the computational
complexity of the proposed method with other
methods versus snapshot number.

Figure 5. The result of the localization of 10
mixed sources using 11 elements derived from 100
independent runs in the proposed method.

6. CONCLUSIONS

In this paper, a new method is proposed to deal with the simultaneous presence of NFSs and FFSs, using
a symmetric ULA. By computing cumulants from the output of array sensors in five special arrangements
and efficiently separating the components of NFSs and FFSs by the cumulant differencing, we are able to
classify and estimate the parameters of NFSs and FFSs without any spectral search and avoid aperture
loss. Since both the DOA and range parameters of the NFSs are estimated from the eigen decomposition
of a given matrix, the additional stage for pairing is avoided.

We examine the proposed method in different tests and show that it has a better performance than
other methods in the classification and estimation. In the scenario with two NFSs and two FFSs, for SNR
15 dB and with 750 snapshots, the maximum RMSEs of DOA and range are obtained 0.009◦ and 0.08λ
in the proposed method, whereas for methods [15, 18, 19] the corresponding values are obtained 0.03◦,
0.01◦, 0.01◦ and 0.17λ, 0.1λ, 0.08λ, respectively. This superiority has been achieved while the proposed
method has less computational complexity. We also show that for fewer and moderate snapshots, the
proposed algorithm has much less computational complexity than other methods due to the elimination
of heavy search steps. In another scenario, with 1000 snapshots, for SNRs above 9 dB, a 100% correct
classification of all sources is obtained, whereas this probability was achieved for SNRs above 31, 25,
and 31 dB in methods [15, 18, 19], respectively.

To put the proposed method into further applications, future work will be concentrated on the
development of the proposed method for more specific scenarios such as the presence of correlated
signals and the use of the exact model of the NF.

APPENDIX A. DERIVATION AND ESTIMATION OF (11)

Here, the details of the derivation of the second equation of Eq. (11) are given. Four other equations
can be derived in the same way. We commence from Eq. (10)

c4x, 2 (u, v) = Cum
{
x∗u (k) , xu+1 (k) , x

∗
v+1 (k) , xv (k)

}
= E

{
x∗u (k) xu+1 (k) x

∗
v+1 (k) xv (k)

}
−E {x∗u (k) xu+1 (k)}E

{
x∗v+1 (k) xv (k)

}− E
{
x∗u (k) x

∗
v+1 (k)

}
E {xu+1 (k)xv (k)}

−E {x∗u (k) xv (k)}E
{
xu+1 (k) x

∗
v+1 (k)

}
. (A1)

The first mathematical expectation in Eq. (A1) can be written as Eq. (A2). In the same way, three
other mathematical expectations can be computed. Because all signals are uncorrelated to each other
and to the noise (assumptions 2 and 3), we can rewrite Eq. (A2) as Eq. (A3). Since the noise is Gaussian
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(assumption 3), the terms concerning noise are neutralized by each other. Finally, with respect to being
stationary signals (assumption 2), Eq. (11) is obtained.

E
{
x∗u(k)xu+1(k)x

∗
v+1(k)xv(k)

}
=E

⎧⎨
⎩
⎡
⎣NN∑

i=1

s∗i (k) e
−j(γiu+φiu

2) +

N∑
i=NN+1

s∗i (k) e
−jγiu + n∗

u (k)

⎤
⎦

×
⎡
⎣NN∑

l=1

sl(k)e
j(γl(u+1)+φl(u+1)2)+

N∑
l=NN+1

sl (k) e
jγl(u+1) + nu+1 (k)

⎤
⎦

⎡
⎣ NN∑
m=1

s∗m(k)e−j(γm(v+1)+φm(v+1)2) +

N∑
m=NN

s∗m(k)e−jγm(v+1)+n∗
v+1(k)

⎤
⎦

×
⎡
⎣NN∑
o=1

so (k) e
j(γov+φov2)+

N∑
o=NN+1

so (k) e
jγov + nv (k)

⎤
⎦
⎫⎬
⎭ (A2)

c4x ,2 (u, v) =

NN∑
i=1

E {s∗i (k) si (k) s∗i (k) si (k)}ej2φi(u−v) +

N∑
i=NN+1

E {s∗i (k) si (k) s∗i (k) si (k)}

−
[
NN∑
i=1

E {s∗i (k) si (k)}
][

NN∑
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E {s∗i (k) si (k)}
]
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c4x, 2 (u, v) can be estimated from the following equation:

ĉ4x, 2 (u, v) =
1

Ns

Ns∑
k=1

x̄∗u (k) x̄u+1 (k) x̄
∗
v+1 (k) x̄v (k)−

1

N2
s

Ns∑
k=1

x̄∗u (k) x̄u+1 (k)

Ns∑
k=1

x̄∗v+1 (k) x̄v (k)

− 1

N2
s

Ns∑
k=1

x̄∗u(k)x̄
∗
v+1(k)

Ns∑
k=1

x̄u+1(k)x̄v(k)− 1

N2
s

Ns∑
k=1

x̄∗u(k)x̄v(k)
Ns∑
k=1

x̄u+1(k)x̄
∗
v+1(k) (A4)

where x̄i(t) = xi(t)− Ei, and Ei is obtained from averaging the data received from the ith sensor.
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APPENDIX B. THE PROOF OF BEING TOEPLITZ OF THE MATRICES OF
EQ. (22)

Here we prove that CN1 is a Toeplitz matrix. It suffices to show that CN1 (ũ+ 1, ṽ + 1) = CN1 (ũ, ṽ).
According to Eq. (13)

CN1 (ũ+ 1, ṽ + 1) =

NN∑
i=1

csie
j2φi(ũ+1−(ṽ+1)) =

NN∑
i=1

csie
j2φi(ũ−ṽ) (B1)

which is equal to CN1 (ũ, ṽ). In a similar manner, it is easy to prove five other five matrices being
Toeplitz.
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