Vol. 92
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-05-14
A Gegenbauer Polynomial Solution for the Electromagnetic Scattering by a Subwavelength Circular Aperture in an Infinite Conducting Screen
By
Progress In Electromagnetics Research C, Vol. 92, 71-85, 2019
Abstract
In this paper, we use magnetic vector potential formulation, along with equivalence principle and image theory, to solve the electromagnetic scattering of a polarized incident plane wave by a subwavelength circular aperture in a conducting screen. The underlined analytical formulation yields a closed-form solution that is accurate for any angle of incidence or polarization and valid for the near-, intermediate- and far-field regions of observation. The formulation is based on Bouwkamp's diffraction model that uses dominant quasi-static magnetic current modes to represent the governing magnetic current distribution in the circular aperture for any incident wave. Taylor series expansion was implemented on the free-space Green's function, and the individual Taylor terms were integrated analytically to produce closed-form expressions for the scattered fields in all regions. In doing so, the Gegenbauer polynomial expansion was applied in order to allow evaluation of the resulting integrals for any observation point in the lower half space. The results obtained from the proposed analytical approach were compared with data generated through a direct application of a numerical integration technique. The comparison illustrates the validity and accuracy of the proposed analytical formulation.
Citation
Marios Andreas Christou, and Anastasis C. Polycarpou, "A Gegenbauer Polynomial Solution for the Electromagnetic Scattering by a Subwavelength Circular Aperture in an Infinite Conducting Screen," Progress In Electromagnetics Research C, Vol. 92, 71-85, 2019.
doi:10.2528/PIERC19022005
References

1. Mertz, J., Introduction to Optical Microscopy, Roberts and Company Publishers, United States of America, 2009.

2. Van Labeke, D. and D. Barchiesi, "Probes for scanning tunneling optical microscopy: A theoretical comparison," Journal of Optical Society of America A, Vol. 10, No. 10, 2193-2201, 1993.
doi:10.1364/JOSAA.10.002193

3. Thio, T., K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbeseni, "Enhanced light transmission through a single subwavelength aperture," Optics Letters, Vol. 26, No. 24, 1972-1974, 2001.
doi:10.1364/OL.26.001972

4. Bethe, H. A., "Theory of diffraction by small holes," Phys. Rev., Vol. 66, No. 10, 163-182, 1944.
doi:10.1103/PhysRev.66.163

5. Bouwkamp, C. J., "On Bethe’s theory of diffraction by small holes," Philips Res. Rep., Vol. 5, No. 10, 321-332, 1950.

6. Bouwkamp, C. J., "Diffraction theory. A critique of some recent developments,", Washington Sq. College of Arts and Science, New York University, 1953.

7. Balanis, A. C., Advanced Engineering Electromagnetics, 2nd edition, Wiley, New Jersey, 2012.

8. Leviatan, Y., "Study of near-zone fields of a small aperture," Journal of Applied Physics, Vol. 60, No. 5, 1577-1583, 1986.
doi:10.1063/1.337294

9. Nakano, T. and S. Kawata, "Numerical analysis of the near-field diffraction pattern of a small aperture," Journal of Modern Optics, Vol. 39, No. 3, 645-661, 1992.
doi:10.1080/09500349214550611

10. Durig, U., D. W. Pohl, and F. Rohner, "Near-field optical-scanning microscopy," Journal of Applied Physics, Vol. 59, No. 10, 3318-3327, 1986.
doi:10.1063/1.336848

11. Miexner, J. and W. Andrejewski, "Strenge theorie der beugungebener elektromagnetischer wellen an der vollkommen leitenden kreisscheibe und an der kreisformigen Offnung im vollkommen leitenden ebenen schirm," Ann. Physik, Vol. 7, 157-158, 1950.
doi:10.1002/andp.19504420305

12. Born, M. and E. Wolf, Principles of Optics, Pergamon Press, London, 1959.

13. Flammer, C., "The vector wave function of the diffraction of electromagnetic waves by circular disks and apertures. I. Oblate spheroidal vector wave functions," Journal of Applied Physics, Vol. 24, 1218-1223, 1953.
doi:10.1063/1.1721474

14. Roberts, A., "Electromagnetic theorycof diffraction by a circular aperture in a thick, perfectly conducting screen," Journal of Optical Society of America A, Vol. 4, 197-1983, 1987.
doi:10.1364/JOSAA.4.001970

15. Van Labeke, D., D. Barchiesi, and F. Baida, "Optical characterization of nanosources used in scanning near-field optical microscropy," Journal of Optical Society of America A, Vol. 12, No. 4, 695-703, 1995.
doi:10.1364/JOSAA.12.000695

16. Van Labeke, D., F. Baida, D. Barchiesi, and D. Courjon, "A theoretical model for the inverse scanning tunneling optical microscope (ISTOM)," Opt. Communi., Vol. 114, No. 5–6, 470-480, 1995.
doi:10.1016/0030-4018(94)00555-9

17. Michalski, K. A., "Spectral domain analysis of a circular nano-aperture illuminating a planar layered sample," Progress In Electromagnetics Research B, Vol. 28, 307-323, 2011.
doi:10.2528/PIERB11011010

18. Michalski, K. A., "Complex image method analysis of a plane wave-excited subwavelength circular aperture in a planar screen," Progress In Electromagnetics Research B, Vol. 27, 253-272, 2011.
doi:10.2528/PIERB10101602

19. Kobayashi, I., "Darstellung eines potentials in zylindrical koordinaten, das sich auf einer ebene unterwirft," Science Reports of the Thohoku Imperifal Unversity, Ser. I, Vol. XX, No. 2, 197–212, 1931.

20. Nomura, Y. and S. Katsura, "Diffraction of electric wave by circular plate and circular hole," Sci. Rep., Inst., Electr. Comm., Vol. 10, 1-26, Tohoku University, 1958.

21. Hongo, K. and Q. A. Naqvi, "Diffraction of electromagnetic wave by disk and circular hole in a perfectly conducting plane," Progress In Electromagnetic Research, Vol. 68, 113-150, 2007.
doi:10.2528/PIER06073102

22. Michalski, K. A. and J. R. Mosig, "On the plane wave-excited subwavelength circular aperture in a thin perfectly conducting flat screen," IEEE Trans. Antennas Propag., Vol. 62, 2121-2129, 2014.
doi:10.1109/TAP.2014.2302839

23. Michalski, K. A. and J. R. Mosig, "Analysis of a plane wave-excited subwavelength circular aperture in a planar conducting screen illuminating a multilayer uniaxial sample," IEEE Trans. Antennas Propag., Vol. 63, 2054-2063, 2015.
doi:10.1109/TAP.2015.2404573

24. Polycarpou, A. C. and A. M. Christou, "Closed-form expressions for the on-axis scattered fields by a sub-wavelength circular aperture in an infinite conducting plane," IEEE Trans. Antennas Propag., Vol. 65, 978-982, 2017.
doi:10.1109/TAP.2016.2634278

25. Arfken, G. B. and H. J.Weber, Mathematical Methods for Physicists, 6th edition, Elsevier, 2005.