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A Gegenbauer Polynomial Solution for the Electromagnetic
Scattering by a Subwavelength Circular Aperture

in an Infinite Conducting Screen

Marios A. Christou1 and Anastasis C. Polycarpou2, *

Abstract—In this paper, we use magnetic vector potential formulation, along with equivalence principle
and image theory, to solve the electromagnetic scattering of a polarized incident plane wave by a
subwavelength circular aperture in a conducting screen. The underlined analytical formulation yields
a closed-form solution that is accurate for any angle of incidence or polarization and valid for the
near-, intermediate- and far-field regions of observation. The formulation is based on Bouwkamp’s
diffraction model that uses dominant quasi-static magnetic current modes to represent the governing
magnetic current distribution in the circular aperture for any incident wave. Taylor series expansion
was implemented on the free-space Green’s function, and the individual Taylor terms were integrated
analytically to produce closed-form expressions for the scattered fields in all regions. In doing so, the
Gegenbauer polynomial expansion was applied in order to allow evaluation of the resulting integrals
for any observation point in the lower half space. The results obtained from the proposed analytical
approach were compared with data generated through a direct application of a numerical integration
technique. The comparison illustrates the validity and accuracy of the proposed analytical formulation.

1. INTRODUCTION

Optical microscopy [1] is widely used in science and technology to inspect the surface of a sample
material through the use of visible light and a magnification lens. The resolution of this technique
though is limited by the operating wavelength of the light source. The invention of near-field scanning
optical microscopy (NSOM) [2, 3], on the other hand, allowed for a substantial improvement of the
spatial resolution of the sample image, compared to conventional optical microscopy. This technique
positions the sample under investigation in the near-field region of the subwavelength aperture. In fact,
the spatial resolution of the image is limited by the dimension of the circular aperture and not by the
wavelength of the illuminating light, as is the case of conventional optical microscopy. Consequently,
it is highly important that analytical methods are formulated for the accurate and quick calculation of
the corresponding scattered fields.

Scattering of a polarized electromagnetic wave that is obliquely incident on a subwavelength circular
aperture in an infinite conducting ground plane has attracted the interest from many scientists and
researchers during the last 80 years. Research on the topic started in the mid 40s with the work on the
theory of diffraction by small holes published by Bethe [4]. He was able to derived fictitious charges and
magnetic currents in the diffracting hole that satisfy Maxwell’s equations and boundary conditions on the
conducting screen. A few years later, Bouwkamp [5, 6] provided corrections for these fictitious sources,
which significantly improved the results in the near-field region of the aperture. Using these equivalent
currents in the context of the vector potential formulation [7], one may evaluate the corresponding
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radiation integrals — either in spatial or spectral domain — in order to obtain the diffracted fields due
to an incident plane wave. Based on the Bethe and Bouwkamp equivalent models, there were a number
of numerical studies on the scattered fields by a circular aperture [8–10]. The derivation of closed-form
expressions, however, allows for quick and computationally efficient evaluation of the scattered fields in
the vicinity of the aperture.

Back in the 50s, there were other attempts to evaluate the scattering from circular apertures in
an exact way. Miexner and Andrejewski [11] obtained a rigorous solution for the scattering from a
perfectly conducting, infinitely thin circular disk. Using Babinet’s principle [12], the obtained solution
is directly linked to the scattering from a perfectly conducting, infinitely thin screen with a circular
aperture. The solution is written in terms of an infinite series of spherical wave eigenfunctions using
oblate or prolate spheroidal coordinates. Flammer in 1953 [13] also solved the same problem using a
vector wave solution based on oblate spherical vector wave functions. More recently, Roberts [14] used a
similar method to solve the problem of diffraction by a circular aperture in a perfectly conducting layer
with finite thickness. The electric and magnetic fields, in the interior of the aperture were expanded in
terms of circular waveguides modes.

The scattering problem by a circular aperture, based on the Bethe-Bouwkamp model, was later
treated using the spectral domain method implementing Fourier transforms and Hankel transform
integrals to express the scattered fields in a more convenient way [15–17]. In all these approaches, the
incident plane wave was normal to the aperture, which is a simpler special case of the generic scattering
problem. It was only recently that Michalski [18] used an approximate complex-image method to
compute those Hankel-transform integrals for the oblique incidence. Other researchers worked with the
Kobayashi Potential method [19], which is similar to a spectral-domain method of moments (MoM), that
implements characteristic functions that satisfy proper edge and boundary conditions, thus producing
faster convergent solutions. Such works are available by Nomura and Katsura [20], and later, by Hongo
and Naqvi [21].

Recently, Michalski and Mosig [22, 23] revisited the scattering problem for an oblique incidence,
and using the spectral domain method, they derived closed-form expressions for the scattered fields in
the near- and far-field zone of the aperture. These expressions are easily coded into a computer program
in order to produce accurate and timely results for these two regions of observation. However, for the
intermediate-field region, the obtained Hankel-transform integrals were evaluated numerically using a
procedure based on a Gaussian quadrature with convergence acceleration by extrapolation.

In subsequent work published by the authors [24], a vector potential formulation was used to
express the scattered fields in the three regions of observation in terms of radiation integrals. The
free-space Green’s function involved in these radiation integrals was written in terms of a Taylor-series
expansion about the center of the aperture. This series expansion created individual terms of the form
1/R2α, where α is a real number and R is the distance from the source to the observation point. As
to the difficulty of evaluating those integrals for any observation angle, the analysis was limited only to
computation of the scattered fields along the axis of the aperture. In this work, we use a Gegenbauer
polynomial expansion in order to evaluate the radiation integrals in spatial domain and for any angle
of observation. This work results in closed-form expressions for the scattered electric fields everywhere
in the lower half space of the aperture. The analysis is given only for the case where the radial distance
r is larger than the radius of the aperture.

In the following section, Section 2, we present the formulation of the problem based on the electric
vector potential. The use of Taylor- and Gegenbauer-series expansions are explained and demonstrated.
In Section 3, we present analytical results obtained with the proposed method. For validation purposes,
these are compared with numerical results obtained using a numerical integration. Concluding remarks
are presented in Section 4.

2. PROBLEM FORMULATION

The formulation of the problem is based on the geometry shown in Fig. 1. A linearly polarized plane
wave is incident on a circular aperture in an infinite conducting screen of zero thickness. The origin
of the coordinate system coincides with the center of the circular aperture, and the positive z-axis is
directed downwards in the lower half space. Due to the rotational symmetry of the problem, we assume
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Figure 1. Problem geometry.

that the plane of incidence corresponds to the x-z plane, as shown in the figure. The incident angle, θi,
is measured between the incident propagation vector, �ki, and the positive z-axis. The polarization of
the wave is defined by the angle ψi, which is measured from the plane of incidence to the electric-field
vector. Specifically, for ψi = 0◦, the polarization corresponds to a TM-wave, and for ψi = 90◦, the
polarization corresponds to a TE-wave.

An incident plane wave, of arbitrary polarization defined by angle ψi, is given by

�Ei = âee
−jk(κxix+κziz) (1)

where

âe = âxκzi cosψi + ây sinψi − âzκxi cosψi (2)

κxi =
kxi

k
= sin θi, κzi =

kzi

k
= cos θi (3)

The equivalence principle, along with the image theory, can be used to determine the scattered fields
in the lower half space provided the magnetic current density distribution is known in the aperture.
According to the Bouwkamp diffraction model [5], which provides an improvement over the theory of
diffraction by small holes published by Bethe a few years earlier [4], the governing magnetic current
density due to an incident plane wave can be approximated by the dominant modes provided that
the largest dimension of the aperture is only a fraction of the operating wavelength. As a result, the
magnetic current density can be expressed in terms of two orthogonal components:

�M = âρMρ + âφMφ (4)

where

Mρ =
4jk
3π

[
κ2

xi cosψi sinφ′ − 2si(φ′)
] √

a2 − ρ′2 (5)



74 Christou and Polycarpou

Mφ =
2κxi cosψi

π

ρ′√
a2 − ρ

′2
+

4jk
3π

{
κ2

xi cosψi cosφ′
a2 − 2ρ

′2√
a2 − ρ

′2
− ci(φ′)

2a2 − ρ
′2√

a2 − ρ
′2

}
(6)

and

si(φ′) = cosψi sinφ′ − κzi sinψi cosφ′ (7)
ci(φ′) = cosψi cosφ′ + κzi sinψi sinφ′ (8)

Note that a is the radius of the aperture, and (ρ′, φ′) corresponds to an arbitrary source point in the
circular domain (see Fig. 1). The magnetic vector potential formulation can be used to solve for the
scattered fields by the aperture. Specifically, the magnetic vector potential can be expressed as a double
integration of the magnetic current density multiplied by the free-space Green’s function [7]. Knowing
the vector potential �F , the electric and magnetic fields at an observation point in the lower half space
can be expressed as follows:

�E = �EF = −1
ε
∇× �F (9)

�H = �HF = − 1
jωμ

∇× �EF (10)

2.1. Derivation of the Scattered Electric Fields

Using basic electromagnetic theory [7], the vector potential �F can be formulated in terms of a surface
integration over the circular aperture. The equivalence principle, along with the image theory, can be
implemented in order to simplify the problem for the evaluation of the fields in the lower half space.
By taking the curl of the vector potential, according to Eq. (9), the scattered electric field expressions
are derived:

Er = − 1
2π

∫∫
S

Mφ cos θρ′ĜodS′ (11)

Eθ = − r

2π

∫∫
S

[−Mρ sin ξ +Mφ cos ξ] ĜodS′ +
1
2π

∫∫
S

Mφ sin θρ′ĜodS′ (12)

Eφ =
r

2π

∫∫
S

cos θ [Mρ cos ξ +Mφ sin ξ] ĜodS′ (13)

where

Ĝo =
(

jk
R2

+
1
R3

)
e−jkR (14)

R =
√
ρ′2 + r2 − 2rρ′ sin θ cos ξ (15)

ξ = φ− φ′ (16)

A Taylor-series expansion about the origin of the coordinate system is introduced for the exponential
function e−jkR:

e−jkR = 1 − jkR− k2R2

2!
+

jk3R3

3!
+ · · · =

∞∑
n=0

(−1)n(jk)n

n!
Rn (17)

Substituting Eq. (17) into Eq. (14) and collecting terms according to the integer power of R, the modified
Green’s function Ĝo becomes

Ĝo =
∞∑

m=1

C(m)Rm−4 (18)

where

C(m) =
(−1)m−4(m− 2)(jk)m−1

(m− 1)!
(19)
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The convergence of the series in Eq. (18) can be shown using the Cauchy’s ratio test, which involves
the m+ 1 and m general terms:

um =
(−1)m−4(m− 2)(jk)m−1

(m− 1)!
Rm−4

um+1 =
(−1)m−3(m− 1)(jk)m

m!
Rm−3

The ratio test yields the following result:

lim
m→∞

∣∣∣∣um+1

um

∣∣∣∣ = |jkR| lim
m→∞

m− 1
m2 − 2m

= 0 (20)

Absolute convergence is guaranteed because the limit is zero as the index m approaches infinity.
Note, however, that the rate of convergence becomes increasingly slower as the observation distance
R, measured from the source point, increases.

Starting with the evaluation of the θ-component of the electric field, the latter can be expressed as
a superposition of three distinct terms:

Eθ = E
(1)
θ + E

(2)
θ + E

(3)
θ (21)

where

E
(1)
θ =

r

2π

∞∑
m=1

C(m)

a∫
0

2π∫
0

Mρ sin ξRm−4ρ′dφ′dρ′ (22)

E
(2)
θ = − r

2π

∞∑
m=1

C(m)

a∫
0

2π∫
0

Mφ cos ξRm−4ρ′dφ′dρ′ (23)

E
(3)
θ =

sin θ
2π

∞∑
m=1

C(m)

a∫
0

2π∫
0

MφR
m−4ρ

′2dφ′dρ′ (24)

Based on the above expressions, let us define the following double integrals:

I(1)θ =

a∫
0

2π∫
0

Mρ sin ξRm−4ρ′dφ′dρ′ (25)

I(2)θ =

a∫
0

2π∫
0

Mφ cos ξRm−4ρ′dφ′dρ′ (26)

I(3)θ =

a∫
0

2π∫
0

MφR
m−4ρ

′2dφ′dρ′ (27)

Each one of these integrals can be further broken down into simpler terms due to the definition of the
governing magnetic current densities in the aperture. For example, Eq. (25), can be expressed in the
form:

I(1)θ = I(1,1)
θ + I(1,2)

θ + I(1,3)
θ (28)

where

I(1,1)
θ =

4jk
3π

k2
xi cosψi

a∫
0

2π∫
0

sinφ′F1(R, ρ′)dφ′dρ′ (29)
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I(1,2)
θ = −8jk

3π
cosψi

a∫
0

2π∫
0

sinφ′F1(R, ρ′)dφ′dρ′ (30)

I(1,3)
θ =

8jk
3π

kzi sinψi

a∫
0

2π∫
0

cosφ′F1(R, ρ′)dφ′dρ′ (31)

and
F1(ξ,R, ρ′) = sin ξRm−4ρ′

√
a2 − ρ′2 (32)

Likewise, the second double integral in Eq. (26) can be written in the form:

I(2)θ = I(2,1)
θ + I(2,2)

θ + I(2,3)
θ + I(2,4)

θ (33)

where

I(2,1)
θ =

2kxi cosψi

π

a∫
0

2π∫
0

F2(ξ,R, ρ′)dφ′dρ′ (34)

I(2,2)
θ =

4jk
3π

k2
xi cosψi

a∫
0

2π∫
0

cosφ′F3(ξ,R, ρ′)dφ′dρ′ (35)

I(2,3)
θ = −4jk

3π
cosψi

a∫
0

2π∫
0

cosφ′F4(ξ,R, ρ′)dφ′dρ′ (36)

I(2,4)
θ = −4jk

3π
kzi sinψi

a∫
0

2π∫
0

sinφ′F4(ξ,R, ρ′)dφ′dρ′ (37)

and

F2(ξ,R, ρ′) = cos ξRm−4 ρ
′2√

a2 − ρ
′2

(38)

F3(ξ,R, ρ′) = cos ξRm−4 a
2 − 2ρ

′2√
a2 − ρ′2

(39)

F4(ξ,R, ρ′) = cos ξRm−4 2a2 − ρ
′2√

a2 − ρ
′2

(40)

For the last integral in Eq. (27), we can write

I(3)θ = I(3,1)
θ + I(3,2)

θ + I(3,3)
θ + I(3,4)

θ (41)

where

I(3,1)
θ =

2kxi cosψi

π

a∫
0

2π∫
0

F5(R, ρ′)dφ′dρ′ (42)

I(3,2)
θ =

4jk
3π

k2
xi cosψi

a∫
0

2π∫
0

cosφ′F6(R, ρ′)dφ′dρ′ (43)

I(3,3)
θ = −4jk

3π
cosψi

a∫
0

2π∫
0

cosφ′F7(R, ρ′)dφ′dρ′ (44)
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I(3,4)
θ = −4jk

3π
kzi sinψi

a∫
0

2π∫
0

sinφ′F7(R, ρ′)dφ′dρ′ (45)

and

F5(R, ρ′) = ρ′Rm−4 ρ
′2√

a2 − ρ′2
(46)

F6(R, ρ′) = ρ′Rm−4 a
2 − 2ρ

′2√
a2 − ρ

′2
(47)

F7(R, ρ′) = ρ′Rm−4 2a2 − ρ
′2√

a2 − ρ′2
(48)

Concerning the radial component of the electric field, the governing expression is very similar to
the expression for I(3)θ . As a result, the Er component can be conveniently written as

Er = −r cos θ
2π

∞∑
m=1

C(m)I(3)θ , θ ∈ [0, 2π] (49)

The third component of the electric field, Eφ, can be expressed in the following form:

Eφ = E
(1)
φ + E

(2)
φ (50)

where

E
(1)
φ =

r cos θ
2π

∞∑
m=1

C(m)

a∫
0

2π∫
0

Mρ cos ξRm−4ρ′dφ′dρ′ (51)

E
(2)
φ =

r cos θ
2π

∞∑
m=1

C(m)

a∫
0

2π∫
0

Mφ sin ξRm−4ρ′dφ′dρ′ (52)

Based on the aforementioned expressions, we can define the following two integrals:

I(1)φ =

a∫
0

2π∫
0

Mρ cos ξRm−4ρ′dφ′dρ′ (53)

I(2)φ =

a∫
0

2π∫
0

Mφ sin ξRm−4ρ′dφ′dρ′ (54)

The first integral in Eq. (53) can be broken down into three individual terms:

I(1)φ = I(1,1)
φ + I(1,2)

φ + I(1,3)
φ (55)

where

I(1,1)
φ =

4jk
3π

k2
xi cosψi

a∫
0

2π∫
0

sinφ′F8(R, ρ′)dφ′dρ′ (56)

I(1,2)
φ = −8jk

3π
cosψi

a∫
0

2π∫
0

sinφ′F8(R, ρ′)dφ′dρ′ (57)

I(1,3)
φ =

8jk
3π

kzi sinψi

a∫
0

2π∫
0

cosφ′F8(R, ρ′)dφ′dρ′ (58)
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and
F8(ξ,R, ρ′) = cos ξRm−4ρ′

√
a2 − ρ′2 (59)

The second double integral in Eq. (54) can be broken down into four terms:

I(2)φ = I(2,1)
φ + I(2,2)

φ + I(2,3)
φ + I(2,4)

φ (60)

where

I(2,1)
φ =

2kxi cosψi

π

a∫
0

2π∫
0

F9(ξ,R, ρ′)dφ′dρ′ (61)

I(2,2)
φ =

4jk
3π

k2
xi cosψi

a∫
0

2π∫
0

cosφ′F10(ξ,R, ρ′)dφ′dρ′ (62)

I(2,3)
φ = −4jk

3π
cosψi

a∫
0

2π∫
0

cosφ′F11(ξ,R, ρ′)dφ′dρ′ (63)

I(2,4)
φ = −4jk

3π
kzi sinψi

a∫
0

2π∫
0

sinφ′F11(ξ,R, ρ′)dφ′dρ′ (64)

and

F9(ξ,R, ρ′) = sin ξRm−4 ρ
′2√

a2 − ρ′2
(65)

F10(ξ,R, ρ′) = sin ξRm−4 a
2 − 2ρ

′2√
a2 − ρ

′2
(66)

F11(ξ,R, ρ′) = sin ξRm−4 2a2 − ρ
′2√

a2 − ρ′2
(67)

The objective now is to evaluate analytically all these double integrals over the domain of the
circular aperture. This is achieved through the use of Gegenbauer polynomial expansion which is
explained in detail in the following section.

2.2. Analytical Evaluation of the Double Integrals

As shown in the previous subsection, all integrals involved in the evaluation of the scattered fields in the
lower half space incorporate the term 1/R2α, where α = 4−m. Note that R, which is the distance from
the source point to the observation point, is dependent not only on the cylindrical coordinates of the
source point, but also on the azimuth and elevation angles of the observation point. In an earlier paper
by the authors [24], the scattered fields were solved for the special case where the observation point lies
on the z-axis; i.e., the angle θ was set equal to zero. In order to facilitate the analytical solution of the
scattered fields for off-axis observation, we implement a Gegenbauer polynomial expansion [25] of the
1/R2α term:

1
(r2 + ρ

′2 − 2rρ′ sin θ cos ξ)α
=

∞∑
n=0

ρ′n

rn+2α
C(sin θ cos ξ) (68)

where C is the Gegenbauer polynomial which can be written as a finite sum of gamma functions:

C(sin θ cos ξ) =
�n/2�∑
k=0

(−1)k
Γ(n− k + α)

Γ(α)k!(n − 2k)!
(2 sin θ cos ξ) (69)
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The Gegenbauer polynomial expansion in Eq. (68) is convergent only for cases where r > ρ′. This is
guaranteed only for observation points where r > a, where a is the radius of the aperture.

Using the series expansion in Eq. (68), the I(1)θ integrals can be conveniently expressed as follows:

I(1,1)
θ = −4jk

3π
k2

xi cosψi cosφS1 (70)

I(1,2)
θ =

8jk
3π

cosψi cosφS1 (71)

I(1,3)
θ =

8jk
3π

kzi sinψi sinφS1 (72)

where

S1 =
∞∑

n=0

�n/2�∑
k=0

(−1)k
Γ(n− k + α)(2 sin θ)n−2k

Γ(α)k!(n − 2k)!
· a

n+3

rn+2α

· (K1(n − 2k) − K1(n− 2k + 2)) · (K2(n+ 1) − K2(n+ 3)) (73)

and

K1(p) =

2π∫
0

cospwdw, K2(p) =

π/2∫
0

sinpwdw (74)

Similarly, the integrals I(2)θ can be written as

I(2,1)
θ =

2kxi cosψi

π
S2 (75)

I(2,2)
θ =

4jk
3π

k2
xi cosψi cosφS3 (76)

I(2,3)
θ = −4jk

3π
cosψi cosφS4 (77)

I(2,4)
θ = −4jk

3π
kzi sinψi sinφS4 (78)

where

S2 =
∞∑

n=0

�n/2�∑
k=0

(−1)k
Γ(n− k + α)(2 sin θ)n−2k

Γ(α)k!(n − 2k)!
· a

n+2

rn+2α
· K1(n+ 1 − 2k) · K2(n + 2) (79)

S3 =
∞∑

n=0

�n/2�∑
k=0

(−1)k
Γ(n− k + α)(2 sin θ)n−2k

Γ(α)k!(n − 2k)!
· a

n+3

rn+2α
· K1(n+ 2−2k) · (K2(n+ 1)−2K2(n+ 3))(80)

S4 =
∞∑

n=0

�n/2�∑
k=0

(−1)k
Γ(n− k + α)(2 sin θ)n−2k

Γ(α)k!(n − 2k)!
· a

n+3

rn+2α
· K1(n+ 2−2k) · (2K2(n+ 1)−K2(n+ 3))(81)

As far as the integrals I(3)θ are concerned, the use of the Gegenbauer polynomial expansion yields

I(3,1)
θ =

2kxi sin θ cosψi

π
S5 (82)

I(3,2)
θ =

4jk
3π

k2
xi sin θ cosψi cosφS6 (83)

I(3,3)
θ = −4jk

3π
sin θ cosψi cosφS7 (84)

I(3,4)
θ = −4jk

3π
kzi sin θ sinψi sinφS7 (85)
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where

S5 =
∞∑

n=0

�n/2�∑
k=0

(−1)k
Γ(n− k + α)(2 sin θ)n−2k

Γ(α)k!(n − 2k)!
· a

n+3

rn+2α
· K1(n− 2k) · K2(n+ 3) (86)

S6 =
∞∑

n=0

�n/2�∑
k=0

(−1)k
Γ(n− k + α)(2 sin θ)n−2k

Γ(α)k!(n − 2k)!
· a

n+4

rn+2α
· K1(n+ 1−2k) · (K2(n+ 2)−2K2(n+ 4)) (87)

S7 =
∞∑

n=0

�n/2�∑
k=0

(−1)k
Γ(n− k + α)(2 sin θ)n−2k

Γ(α)k!(n − 2k)!
· a

n+4

rn+2α
· K1(n+ 1−2k) · (2K2(n+ 2)−K2(n+ 4)) (88)

There remain another two types of integrals related to the φ-component of the scattered electric field.
Specifically, the I(1)φ integral becomes

I(1,1)
φ =

4jk
3π

k2
xi cosψi sinφS8 (89)

I(1,2)
φ = −8jk

3π
cosψi sinφS8 (90)

I(1,3)
φ =

8jk
3π

kzi sinψi cosφS8 (91)

where

S8 =
∞∑

n=0

�n/2�∑
k=0

(−1)k
Γ(n− k + α)(2 sin θ)n−2k

Γ(α)k!(n − 2k)!
· a

n+3

rn+2α
· K1(n− 2k + 2) · (K2(n+ 1) − K2(n+ 3)) (92)

Similarly, the I(2)φ integral can be written as follows:

I(2,1)
φ = 0 (93)

I(2,2)
φ =

4jk
3π

k2
xi cosψi sinφS9 (94)

I(2,3)
φ = −4jk

3π
cosψi sinφS10 (95)

I(2,4)
φ =

4jk
3π

kzi sinψi cosφS10 (96)

where

S9 =
∞∑

n=0

�n/2�∑
k=0

(−1)k
Γ(n− k + α)(2 sin θ)n−2k

Γ(α)k!(n − 2k)!
· a

n+3

rn+2α

· (K1(n− 2k) − K1(n− 2k + 2)) · (K2(n+ 1) − 2K2(n+ 3)) (97)

S10 =
∞∑

n=0

�n/2�∑
k=0

(−1)k
Γ(n− k + α)(2 sin θ)n−2k

Γ(α)k!(n − 2k)!
· a

n+3

rn+2α

· (K1(n− 2k) − K1(n− 2k + 2)) · (2K2(n+ 1) − K2(n+ 3)) (98)
All the aforementioned results correspond to closed-form expressions derived using an exact analytical
approach. A numerical evaluation of the field integrals results in computational errors which may be
significant unless the discretization size becomes extremely small. Such an approach though requires
computationally intensive codes, which often take enormous computer time to provide accurate and
reliable results.

On the other hand, using the proposed analytical approach, highly accurate results of the scattered
fields can be produced in a computationally efficient way. Analytical methods also provide insight and
understanding into the scattering mechanisms of the geometry in hand and the overall wave behavior
in the vicinity of the aperture.
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3. NUMERICAL RESULTS

The validity and accuracy of the analytical method presented in the previous section was tested against a
numerical integration approach based on Riemann sum. The numerical integration was applied directly
on the double integrals shown in Eqs. (11)–(13) implementing fine differential lengths in order to ensure
a high degree of accuracy at the expense of poor computational efficiency. For sufficient accuracy in the
calculation of the scattered fields, the number of subdivisions in the ρ and φ directions must be 2000
and 2160, respectively. The corresponding CPU time on a PC with Intel processor i5-4460, 3.2 GHz
and 16 GB RAM is 70 seconds per point.

For the first experiment, a linearly-polarized TM-wave (ψi = 0◦) was incident on the aperture at
an angle 30 degrees from the vertical (see Fig. 2). The radius of the aperture is 0.316λ, where λ is the
wavelength of the wave. The observation point resides along the radial direction defined by an elevation
angle θ = 70◦ and an azimuth angle φ = 45◦. The three components of the scattered electric field
(magnitude) are plotted as a function of the radial distance in the interval a < r ≤ 100a. The analytical
results are compared favorably against the numerical-integration results. It is important to emphasize
here that the radial component of the scattered electric field decays much faster than the other two
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Figure 2. Magnitude of the scattered field components as a function of normalized observation distance:
ψi = 0 (TM polarization), θi = 30◦, φi = 0◦, θ = 70◦, φ = 45◦.
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Figure 3. Real and imaginary parts of the x-directed scattered electric field along a line parallel to
the x-axis defined by z = 1.2a: ψi = 0 (TM polarization), θi = 30◦, φi = 0◦.
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components when the observation point moves farther away from the center of the aperture. This is
expected as the radial component becomes negligible in the far-field region of observation. It is also
worth mentioning at this point that the analytical results are produced based on 30 Gegenbauer terms
and 70 Taylor-series expansion terms. The corresponding CPU time is 0.45 seconds per point, which is
more than 150 times faster than the numerical approach based on Riemann sum.

A second experiment was conducted where the observation point moves along a parallel-to-the
x-axis line defined by z = 1.2a. The polarization of the wave and the incident elevation angle remain
the same as before. By maintaining the number of Gegenbauer and Taylor-series terms the same as in
the previous experiment, the x and z components of the scattered electric field (real and imaginary)
are illustrated in Figs. 3 and 4, respectively. A comparison between the analytical method and the
numerical-integration approach is illustrated. As observed, the two sets of data compare favorably for
the entire range of points; i.e., −10a ≤ x ≤ 10a. It is therefore evident that the analytical expressions
derived in the previous section provide an accurate and computationally efficient approach for the quick
computation of the scattered fields by a subwavelength aperture in a conducting screen.

Additional computational tests were conducted in order to evaluate the convergence of the Taylor-
series expansion implemented in the underlined analytical approach. The magnitude of the θ-component
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Figure 4. Real and imaginary parts of the z-directed scattered electric field along a line parallel to the
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of the electric field, as a function of the normalized radial distance, is plotted for different number of
Taylor expansion terms in Fig. 5. As illustrated, by increasing the number of Taylor expansion terms,
the analytical results converge to the numerical data. For example, if only 10 Taylor expansion terms
are used, the accuracy is guaranteed up to a normalized radial distance equal to approximately 10.
For accurate results in the entire range illustrated in the figure, it is important that at least 70 Taylor
expansion terms are used. Note, however, that the Taylor series expansion becomes increasingly slower to
converge as the number of terms rise. This is well understood as the Taylor-expansion point corresponds
the origin of the coordinate system, which coincides with the center of the aperture.

Another important numerical test was performed regarding the convergence of the Gegenbauer
polynomial expansion for the evaluation of the scattered field. The real and imaginary parts of the
Ez component are shown plotted in Fig. 6 for a finite number of Gegenbauer terms. Specifically, we
used 1, 2 and 5 Gegenbauer terms in the expansion of the scattered fields. It is clearly illustrated in
this figure that a small number of Gegenbauer terms is sufficient to provide an accurate calculation of
the scattered fields along a line parallel to the x-axis. The effect of adding more Gegenbauer terms in
the expansion is more profound close to the axis of the aperture where the field is relatively stronger.
As illustrated, the analytical results compare well with the numerical set of data, thus reinforcing the
validity of the underlined analytical approach. Similar observations were noticed for all the components
of the scattered field.
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4. CONCLUSIONS

In this paper, it was demonstrated that the scattered fields by a subwavelength circular aperture in an
infinite conducting screen can be derived analytically for any observation point in the lower half plane.
The underlined formulation, based on a Taylor-series expansion of the free-space Green’s function and a
judicious implementation of a Gegenbauer polynomial expansion for terms of the form 1/R2α, resulted
in closed-form expressions for the scattered electric fields by the aperture. Both expansions were highly
convergent resulting in a computationally efficient algorithm for the calculation of the scattered fields
in the near-, intermediate- and far-field regions of the aperture. The accuracy of the closed-form field
expressions was illustrated for different scattering cases by comparing the analytical results with data
obtained through a direct numerical integration of the governing radiation integrals. The underlined
formulation is valid for any arbitrary observation point; however, as the observation distance extends to
the far-field region of the aperture, the rate of convergence of the Taylor-series expansion increasingly
slows down, deeming the approach less efficient.
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