Vol. 91
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-03-21
Investigation of Massive MIMO Scenarios Involving Rooftop Propagation by Bidirectional Ray-Tracing
By
Progress In Electromagnetics Research C, Vol. 91, 129-142, 2019
Abstract
The average downlink data-rate in massive Multiple Input Multiple Output (MIMO) networks within realistic urban environments is characterized by means of ray-tracing simulations. The links between the receivers and transmitters are mostly established through rooftop propagation, which requires special treatment due to multiple diffractions near the optical boundaries. The bidirectional ray-tracing method is utilized in order to simulate these effects accurately. The average downlink data-rate is also calculated according to an empirical rooftop propagation model and the differences as well as the similarities with the bidirectional ray-tracing results are demonstrated. Additionally, an iterative Shooting and Bouncing Rays (SBR) algorithm, which improves the computational efficiency of the bidirectional ray-tracing, is introduced. The algorithm aims to maximize the number of rays, which contribute to the result, by setting specific launch directions. The results show that noticeable improvements in the computation time are possible.
Citation
Mehmet Mert Taygur, Ilya O. Sukharevsky, and Thomas F. Eibert, "Investigation of Massive MIMO Scenarios Involving Rooftop Propagation by Bidirectional Ray-Tracing," Progress In Electromagnetics Research C, Vol. 91, 129-142, 2019.
doi:10.2528/PIERC18122703
References

1. Fukuda, H., T. Nishimura, Y. Ogawa, and T. Ohgane, "Performance evaluation of full-dimension MIMO in indoor line-of-sight environments," IEEE Wireless Communications and Networking Conference (WCNC), 159-164, Gran Canaria, Spain, 2015.
doi:10.1109/WCNC.2015.7127462

2. Ling, H., R. Chou, and S. Lee, "Shooting and bouncing rays: calculating the RCS of an arbitrarily shaped cavity," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 2, 194-205, 1989.
doi:10.1109/8.18706

3. Kouyoumjian, R. and P. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proceedings of the IEEE, Vol. 62, No. 11, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651

4. Holm, P. D., "UTD diffraction coefficients for higher order wedge diffracted fields," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 6, 879-888, 1996.
doi:10.1109/8.509892

5. Walfisch, J. and H. L. Bertoni, "A theoretical model of UHF propagation in urban environments," IEEE Transactions on Antennas and Propagation, Vol. 36, No. 12, 1788-1796, 1988.
doi:10.1109/8.14401

6. Kanatas, A. G., I. D. Kountouris, G. B. Kostaras, and P. Constantinou, "A UTD propagation model in urban microcellular environments," IEEE Transactions on Vehicular Technology, Vol. 46, No. 1, 185-193, 1997.
doi:10.1109/25.554751

7. Taygur, M. M., I. O. Sukharevsky, and T. F. Eibert, "Computation of antenna transfer functions with a bidirectional ray-tracing algorithm utilizing antenna reciprocity," URSI Atlantic Radio Science Conference (AT-RASC), Gran Canaria, Spain, 2018.

8. Taygur, M. M., I. O. Sukharevsky, and T. F. Eibert, "A bidirectional ray-tracing method for antenna coupling evaluation based on the reciprocity theorem," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, 6654-6664, 2018.
doi:10.1109/TAP.2018.2876680

9. Collin, R. and F. Zucker, Antenna Theory, McGraw-Hill, New York, NY, 1969.

10. Sukharevsky, O., Electromagnetic Wave Scattering by Aerial and Ground Radar Objects, CRC Press Inc., Boca Raton, FL, 2014.
doi:10.1201/b17239

11. Gamkrelidze, R. V., Analysis I: Integral Representations and Asymptotic Methods, Springer, Berlin, 2011.

12. Xu, F. and Y.-Q. Jin, "Bidirectional analytic ray tracing for fast computation of composite scattering from electric large target over a randomly rough surface," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 5, 1495-1505, 2009.
doi:10.1109/TAP.2009.2016691

13. Mocker, M. S., M. Schiller, R. Brem, Z. Sun, H. Tazi, T. F. Eibert, and A. Knoll, "Combination of a full-wave method and ray tracing for radiation pattern simulations of antennas on vehicle roofs," European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 2015.

14. Schiller, M., A. Knoll, M. S. Mocker, and T. F. Eibert, "GPU accelerated ray launching for highfidelity virtual test drives of VANET applications," Conference on High Performance Computing & Simulation (HPCS), Amsterdam, Netherlands, 2015.

15. Brem, R. and T. F. Eibert, "A shooting and bouncing ray (SBR) modeling framework involving dielectrics and perfect conductors," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3599-3609, 2015.
doi:10.1109/TAP.2015.2438318

16. Brem, R. and T. F. Eibert, "Multi-radiation center transmitter models for ray tracing," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3382-3388, 2012.
doi:10.1109/TAP.2012.2196956

17. Yun, Z. and M. Iskander, "Ray tracing for radio propagation modeling: principles and applications," IEEE Access, Vol. 3, 1089-1100, 2015.
doi:10.1109/ACCESS.2015.2453991

18. Shi, D., N. Lv, N. Wang, and Y. Gao, "An improved shooting and bouncing ray method for outdoor wave propagation prediction," ACES Journal, Vol. 32, No. 7, 581-585, 2017.

19. Wong, R., Asymptotic Approximations of Integrals, SIAM, Philadelphia, PA, 2001.
doi:10.1137/1.9780898719260

20. Vogler, L. E., "An attenuation function for multiple knife edge diffraction," Radio Science, Vol. 17, No. 6, 1541-1546, 1982.
doi:10.1029/RS017i006p01541

21. International Telecommunications Union "Recommendation ITU-R P1411-9: Propagation data and prediction methods for the planning of short rnage outdoor radio communication systems and radio local area networks in the frequency range 300MHz to 100 GHz,", Report, 2017.