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Investigation of Massive MIMO Scenarios Involving Rooftop
Propagation by Bidirectional Ray-Tracing
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Abstract—The average downlink data-rate in massive Multiple Input Multiple Output (MIMO)
networks within realistic urban environments is characterized by means of ray-tracing simulations. The
links between the receivers and transmitters are mostly established through rooftop propagation, which
requires special treatment due to multiple diffractions near the optical boundaries. The bidirectional
ray-tracing method is utilized in order to simulate these effects accurately. The average downlink
data-rate is also calculated according to an empirical rooftop propagation model and the differences
as well as the similarities with the bidirectional ray-tracing results are demonstrated. Additionally, an
iterative Shooting and Bouncing Rays (SBR) algorithm, which improves the computational efficiency
of the bidirectional ray-tracing, is introduced. The algorithm aims to maximize the number of rays,
which contribute to the result, by setting specific launch directions. The results show that noticeable
improvements in the computation time are possible.

1. INTRODUCTION

Ray-tracing has emerged as a valuable simulation method to analyze massive Multiple Input Multiple
Output (MIMO) networks. As the simulations provide accurate data with much less effort than
real measurements, ray-tracing simulations have been utilized for analyzing numerous massive MIMO
scenarios where geometry-specific data is needed [1].

A typical simulation involves the calculation of the relevant ray paths between two points with the
Shooting and Bouncing Rays (SBR) method [2], and the calculation of the field expressions according
to Geometrical Optics and Uniform Theory of Diffraction (GO/UTD) principles [3].

Although ray-tracing can be successfully applied to many problems, some scenarios may not be
accurately simulated due to certain limitations of the method. In particular, traditional UTD-based
diffraction computations are usually inaccurate when multiple diffractions occur and the diffraction
paths are near the optical boundaries [4]. A typical example of such a case is rooftop propagation,
which can emerge frequently in urban cellular networks. The issue has been addressed in various studies
with analytical or empirical models [5, 6], which rely on certain assumptions about the scenario (e.g.,
limited number of ray interactions, limited frequency range). However, in many realistic problems, these
assumptions might be easily violated and the model may yield inaccurate results. Consequently, such
approaches have not been widely adopted in general-purpose simulation tools, hence, the performance of
the massive MIMO networks in realistic rooftop propagation scenarios has still not been fully recognized.

In this study, the performance of an urban massive MIMO network, where rooftop propagation
is dominant, is investigated by means of a bidirectional ray-tracing algorithm [7,8]. Ray launching is
performed from both transmitter and receiver sites and the rays are captured on an interaction surface.
The antenna transfer function is then obtained by evaluating the reciprocity integral over this surface, in
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a similar way as for Physical Optics (PO). The method can accurately handle multiple diffractions near
the optical boundaries and no strict requirements are imposed on the scenario in general, in contrast to
other methods in the literature.

Additionally, an iterative SBR algorithm is presented in order to address issues regarding the
computational efficiency of the traditional SBR method. Instead of launching a large number of rays
in a single step, multiple ray-launching processes are executed with a smaller number of rays and the
launch directions, which contribute to the result (i.e., the launch directions which lead to ray hits), are
identified. In each step, the new launch directions are chosen according to the launch directions which
lead to ray hits in the previous iterations. It is shown that the algorithm converges quickly and the
total computation time is smaller than for the traditional SBR algorithm.

2. CALCULATION OF ANTENNA TRANSFER FUNCTION

Let R and T be two antennas and I" be a surface which is closed around R. According to the reciprocity
theorem, the induced open circuit voltage at the terminals of R, when T is in transmit, can be given
by [9]

#% [(HT X ER) — (HR X ET)] -dS = UIO{CZ'R, (1)

where v% is the induced open-circuit voltage at antenna R on receive, and ig is the port current
at antenna R on transmit. Egr, Er and Hg, Hp are the electric and magnetic fields for R and T,
respectively. Thus, the transfer function for R and T can be found by computing the surface integral in
Eq. (1), if the port voltage at 7' is also known. Here it is noted that we consider time-harmonic fields
with a suppressed time dependence ¢/“*, where w is the angular frequency.

2.1. Evaluation of the Reciprocity Integral

The surface integral given in Eq. (1) is an oscillatory integral, which is evaluated as follows:
(i) The integrand is expressed as the multiplication of a magnitude and a phase function such that

# [(Hr x Eg) — (Hg x Ep)] - dS = # /P9y (x)dS, (2)
r

T
with
\I/(X) = [(HT X ER) — (HR X ET)] . fl,

19 |1 (x)|
u(x) = sgn <Re <TX)>> |W(x)],

$(x) = arg(¥(x))/B, (3)
where n is the unit surface normal, x is the position in space, and 3 is the propagation constant.

(ii) The integration domain is divided into small triangular sub-domains such that v and ¢ can be
effectively assumed linear in each sub-domain [10]. Hence, the original surface integral can be
approximated by

N -
# 0y (x)dS ~ 3 // 5 (x)dS, (4)
r n=1 "

where N is the number of the subdomains (i.e., triangles), and @, and ¢, are the linear
approximations of u and ¢ in the nth subdomain, respectively.

(iii) @, and ¢y, can be computed according to the values of u and ¢ at each corner of each triangle.
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(iv) According to Eq. (3), Er, Er, Hr, Hr should be known at the triangle corners. Note that the
ray-tracing simulation is utilized to obtain the field information at the intersection points of the
rays and the surface. Nevertheless, it is highly unlikely for the rays to hit all the triangles exactly
at the corner points, therefore, the available samples are interpolated to obtain the field expressions
at the corners.

(v) Once the field expressions at the triangle corners are known and i, (x), ¢,(x) are obtained
accordingly, the surface integral in each subdomain (right-hand side of Eq. (4)) can be computed
analytically.

It can be noticed that the interaction surface I" should be closed according to Eq. (1). However,
the contributions near the stationary phase points or critical points of second kind are usually more
prominent compared to the rest of the integration domain [11]. Thus, an open surface, which is located
between the transmitter and receiver antennas, can be utilized to simulate the diffraction effects, as
demonstrated in [8].

3. BIDIRECTIONAL RAY-TRACING SIMULATION

The bidirectional ray-tracing is mainly based on simultaneous ray launching from transmitter and
receiver sites [12]. The rays are captured on an interaction surface, which is usually more flexible
than reception spheres (commonly utilized in the traditional unidirectional ray-tracing) in shape and
size. An illustrative comparison of traditional unidirectional ray-tracing and bidirectional ray-tracing
methods is shown in Fig. 1. In [8], it was shown that the bidirectional ray-tracing is computationally
more efficient than the traditional unidirectional ray-tracing, and also as accurate. The bidirectional
ray-tracing can usually match the accuracy of unidirectional ray-tracing with a smaller number of ray
launches, even though both antennas are utilized for ray launching. The reception spheres in the
unidirectional ray-tracing simulations are usually no larger than a couple of wavelengths, hence, the
number of ray launches should be large enough to hit such a small target, especially at large distances.
In the bidirectional ray-tracing though, the target might be as large or even larger than the surrounding
objects in the geometry and the number of the rays, which is necessary to perform interpolation and
integration (described in Subsection 2.1), is relatively small. In other words, the distance between the
adjacent rays can be significantly larger than the size of a typical reception sphere in bidirectional
ray-tracing simulations whereas the same conditions could easily yield missed rays in the unidirectional
ray-tracing. Furthermore, the elimination of UTD-based diffraction computations in bidirectional ray-
tracing prevents the growth of the ray tree and the number of the rays in general. A typical simulation
involves three main steps:

(i) Computation of the ray-paths: The feasible ray paths between the surface and antennas are
computed. Ray-launching is performed according to the SBR method at each site where many rays
are launched in random directions. Each ray is traced throughout the geometry until it reaches a
maximum number of interactions or leaves the scene. A ray is discarded from memory, unless it has
intersected with the surface at least once (multiple intersections are possible). Duplicate rays (i.e.,
the rays which have identical path history) are also eliminated after the ray paths are obtained.

(a) (b)

Figure 1. Illustration of unidirectional (a) and bidirectional ray-tracing (b).
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The ray path history is characterized according to the launching antenna, the facets that the ray
bounce from and the triangle on the interaction surface that the ray intersects with.

(ii) Computation of the field expressions: The electric and magnetic field expressions at the ray-surface
intersection points are calculated according to GO/UTD principles. The path history of each ray,
which was obtained during the first step, is utilized for the calculation.

(iii) Computation of the antenna transfer function: The antenna transfer function is calculated
according to the procedure described in Section 2.

The computation time is mostly determined by the ray-tracing and integration processes. Specifying
an explicit complexity expression for a typical ray-tracing algorithm is generally considered to be
extremely challenging though, therefore, empirical evidence and comparative studies are preferable
for a complexity estimation.

It is well known that the bidirectional ray-tracing method can provide considerable improvements
in the computation time, compared to the conventional unidirectional ray-tracing approach. Especially
the UTD-based diffraction calculations, which are commonly utilized in the unidirectional ray-tracing,
is a major factor which inflates the number of the rays in the simulation and makes the ray-tree grow.
A single ray, which is incident on an edge, may cause thousands of new rays to be generated on a Keller
cone, depending on the ray density. It can be predicted that the situation may become even more
severe if multiple diffractions occur in the scenario. A notable advantage of the proposed method is the
feasibility of reducing the number of UTD diffractions (or even completely avoid them under certain
conditions). Thus, the growth of the ray-tree can be repressed and the computation time might be
reduced since a smaller number of rays would be involved in the simulation, as already stated. Previous
studies have shown that the bidirectional ray-tracing method can give good results with a number of the
rays 10 times smaller than required in a unidirectional ray-tracing simulation (only single diffractions
were considered) [8]. It is possible to observe a similar reduction in the number of rays, even in scenarios
without diffractions (e.g., 2-ray ground reflection model), although with less dramatic differences [7].

The complexity of the integration process is typically dependent on the number of the subdomains
created on the interaction surface (see Subsection 2.1). Note that the number of the subdomains is a
function of many different parameters such as wavelength, size of the interaction surface, validity of linear
approximation within the subdomain, which themselves depend on other parameters. Nevertheless, it
is possible to estimate the complexity under certain assumptions. Let us consider that the subdomains
are identical in size in the entire integration domain such that the linear approximation is sufficiently
accurate everywhere. The size of a single triangle is then proportional to A?>. A key point is that
the size of the interaction surface typically scales also with A? in many scenarios since utilizing higher
frequencies (and therefore small wavelengths) might be infeasible in geometrically large scenarios due
to excessive path loss (reduced aperture size, to be precise). Hence, both effects compensate each other
and the number of integration triangles as well as the related computational effort for performing the
integrations remain relatively constant within practically relevant propagation scenarios.

All computations are executed in parallel on a GPU by means of NVIDIA OptiX™ and Thrust
CUDA libraries, whenever possible [13,14].

3.1. Iterative Shooting and Bouncing Rays Algorithm

The SBR method is widely utilized for the simulation of complex scenarios (i.e., many objects, many
interactions), when the alternatives (e.g., image method) are prohibitively time-consuming [15,16]. A
large number of ray launches is usually needed in the SBR method for accurate results but a significant
portion of the rays may not contribute anything as they leave the geometry without interacting with
the target (i.e., the interaction surface) [17]. Thus, the process might become very inefficient since
the computational resources might be utilized for operations which do not affect the result. The
issue has previously been addressed for unidirectional ray-tracing simulations [18] but the proposed
solution is not directly applicable to the bidirectional case. Therefore, a new iterative SBR algorithm,
which accommodates the bidirectional ray-tracing properly, is introduced in this study. Unlike the
unidirectional case, where the size of the target (i.e., reception sphere) should also be modified in each
iteration, the new algorithm is exempt from such a requirement, therefore, more robust in general.
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The algorithm relies on successive ray-launching processes where the launch directions are chosen
according to the directions of the rays which hit the surface in the previous ray-launching steps. The
pseudocode of the algorithm is shown in Fig. 2.

1: procedure ITERATIVE SBR (dy;¢) > dop[1:N][1:2] : initial ray directions in (0,¢) in spherical
coord., N: Number of ray launches, €: iteration stop criteria

2: d<— do;

3: K< 0; > K 1:No. of rays which hit in previous iteration

4: while (true) do

5: h <« rayTrace(d); >h[1: K][1:2]: launc directions of rays which hit

6: if (K- K;)=K < ¢) then

7: break

8: end if

9: if (K < N) then

10: dl1:K][:1<hl:]l:1 >Note that the ray directions, which previously yield hits,
are re-committed into the buffer the rays are re-traced. The performance can further be improved
by avoiding re-tracing.

11: for i< (K :N) do

12: h[mod (i; K )][0] <— h[mod (i; K)][0]+ A©O;

13: hlmod (i; K)1[1] <= h[mod (i; K)I[1]1+ A¢ ; >A0,A¢: uni. dist. random variables in

[-n/2;m/2]. The new launch directions are strongly dependent on the selection of AQ and A¢. A
brief discussion about the selection is given in the following section.

14: d[il[:]1<— h[mod (i; K)][:];
15: end for

16: else

17: break ;

18: end if

19: K, < K;

20: end while

21: end procedure

Figure 2. Iterative SBR pseudocode.

3.1.1. Convergence Study

A key principle, which makes the iterative SBR algorithm convergent in relevant propagation scenarios,
is the conservation of the ray directions which yield ray hits. Hence, for a fixed number of ray launches,
the number of ray hits monotonically increases while the number of the missed rays declines in a similar
manner at each successive iteration. Using the notation from Fig. 2, let N be the number of ray launches
and K € ZT be the number of hits from the initially launched N € Z* rays. Then, the probability of
collecting a ray on the designated target (p) can be given as

K
P=5 N > K. (5)

Assuming that the geometrical configuration, and therefore the value of p, are fixed at each iteration,
the number of hits and misses can be roughly quantified. Let K; and M; be the number of hits and
misses at the ith iteration, respectively. For the sake of simplicity, we do not consider the uniqueness
of the ray paths, i.e., duplicate rays may exist. The number of the ray launches is constant at each
iteration, hence, N = N; = K; + M;, Vi € Z*. Then, the relation among the given quantities can be
expressed as

K():pN,MOZN—KOZN(l—p),0<p§1, (6)

where Ky and My indicate the number of hits and number of misses for the first ray launch process,
respectively. The initial ray launch is omnidirectional, i.e., the ray launch directions denoted by (04, ¢4)
in spherical coordinate system can lie in 0 < O4 < 7, —7 < ¢g < 7, which is the complete unit sphere.
Note that we define p = Ky/N as a constant according to the initial launch. The probability of hit or
miss at each iteration (K;/N, M;/N) can be expressed in terms of p though, as it will be shown in the
following. At each iteration, the ray directions, which have yield hits, are preserved. The missed rays
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are re-launched with new launch directions and hit the target with a probability of p. Thus, the number
of the ray hits at the ith iteration can be written as

K; = K; 1+ pM;_1. (7)

Since the sum of the number of the hits and the number of the misses should be N (the number of ray
launches)

M, =N - K. (8)
By plugging Eq. (8) into Eq. (7),

M; = N—-K;—y —pMj—y =N — (N — M;_1) —pM;_q, i € Z,
M;
M; 4

Equation (9) thus demonstrates that the number of the missed rays decays in each iteration, and the
algorithm can converge as the number of the ray hits becomes very close to N, that is the number of
the ray launches. The convergence rate is strongly dependent on p, which was calculated according to a
certain ray launching scheme where the unit vectors denoting the launch directions are distributed over
the complete unit sphere, in other words, rays might be launched in every direction in every iteration
without any consideration of direction optimization. In the suggested algorithm though, the new ray
directions are obtained by randomly shifting the available direction vectors. It has been observed that a
shifting interval of [—7 /2,7 /2] provides accurate results as well as a decent convergence rate. Utilizing
smaller intervals has usually resulted in clustered intersection points (i.e., intersections points were not
well distributed over the entire surface) while larger intervals have delayed the convergence in general.
Let us now consider a single ray which hit the target in a previous iteration. As many new ray launch
directions will be generated by shifting the launch direction of this ray, a shift between [—m /2,7 /2] in
¢ and 0 indicate that the new launch directions could cover only half of the surface of the unit sphere,
i.e., a hemisphere whose symmetry axis coincides with the original ray launch direction. Therefore, the
likelihood of a hit is two times the likelihood in an omnidirectional launch scheme in general (exceptions
may occur if p is already large). Then the convergence ratio in Eq. (9) can accordingly be modified as

M;
M;—q
The variables Af and A¢ might also be computed with many different approaches since there are no
strict limitations as long as the new ray directions yield well-distributed intersection points on the target

and a likelihood of hit which is larger than p (the suggested approach provides a likelihood of 2p). In
general, the larger the likelihood is, the faster the algorithm can converge.

:(1—p)<1—>MZ‘<MZ‘_1. (9)

= (1—2p). (10)

3.1.2. Comparison with Traditional SBR

A ray launching problem is now considered where the objective is to collect a certain number of rays.
By using the assumptions and simplifications made for Egs. (5)—(10), it can be shown that the number
of ray launches, which are needed to collect a certain amount of rays on the interaction surface, is
smaller in the case of iterative SBR. Let R € Z* be the number of rays which should be collected on
the surface and R < N holds where N is the number of ray launches in a single iteration. Furthermore,
0 < p <« 1 is assumed. Now the convergence criterion is described as R becoming equal to the number
of the ray hits at the ith iteration, in other words R = K;. K; can indirectly be obtained by calculating
the number of missed rays with

K; =N — M, (11)
Using Egs. (9) and (10), M; and K; can be obtained as
My My M;—1 M;

= N(1 —p)(1—-2p)' ~N(1-2p),
Mo M, Mo (1—=p)(1—2p) (1—2p)
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The total number of rays, which were launched (and traced) during the execution of the entire iterative
SBR process (Tispr), can be given as

R
-2 = 1- 2 —i —bg(l_ﬁ)

— 1 =

N log ((1 - 2p)i) ’

R
log (1 — N)
Tisgr = iN = N——F——<.
log ((1 - 2p)’)
Using Eq. (5), the number of ray launches which is needed to achieve R ray hits can be obtained as

R
Tssr = —. (14)
p

(13)

With the auxiliary variable a = %, Tispr and Tspr can be given by

log (1 —a) e — N&
log ((1 - 2p)i) LT (15)

Note that N is not a parameter which is utilized in a conventional SBR simulation (N indicates the
number of ray launches per iteration in iterative SBR) but it is given for comparative purposes in TispR.
The relative variation of both quantities is shown in Fig. 3 for N = 200, 000 ray launches per iteration,
a = 0.5 (i.e., half of the ray launches should hit the surface, hence R = 100,000) and 0 < p < 0.1 (i.e.,
no more than 10% of the rays is expected to reach the surface when the ray launch is omnidirectional.)

Tisgr = N

Number of ray launches to collect 100,000 hits
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Figure 3. Comparison of number of rays required to collect 100,000 rays.

The results indicate that the number of the ray launches which are required to collect a certain
number of rays on an interaction surface is generally smaller in the iterative SBR. case. The difference
between the Tspr and Tigpr curves, which is indicated by the dotted red curve, grows as the value of

p drops. This means, the benefits of iterative SBR over traditional SBR are much more eminent when
the target becomes more and more difficult to hit.

4. ROOFTOP DIFFRACTION SCENARIO

The considered scenario is based on a 3D urban grid with slightly different building heights, varying
between 22m-25m. There are 25 buildings in total on a 250m x 250m area. The grid itself has
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250 m

l—» x ¢ Rx == Tx == ]Intr. surface

z

Figure 4. Urban scenario 2D top view illustration.

been arranged in a way that dominant paths through the street canyons are mostly prevented. Hence,
propagation over the rooftops are usually the primal way to establish a link. 100 transmitter antennas
are arranged as a 10 x 10 planar array and placed on top of a building while 10 single-antenna receivers
are placed randomly on the ground level. All the antennas were assumed as half-wavelength dipoles
which operate at 2.45 GHz. A rectangular interaction surface, which is 250 m x 80 m large, is separating
the transmitters and the receivers. An illustration of the scenario is shown in Fig. 4.

The simulations have been performed with maximum 4 reflections from both transmitter and
receiver sites (combined paths up to 8 total reflections possible) and 1 UTD diffraction only from the
receiver sites. The UTD diffractions were only allowed at the edges of the buildings which lie along the
y-axis at the roof level. Note that the UTD diffractions are essential for the receiver sites since they are
located at the shadow regions. On the other hand, the transmitter antennas are already located near
the optical boundaries (i.e., roof level). Therefore, UTD contributions are not considered in that case
(reflections are still feasible though). Illustrations of three potential propagation scenarios and the 2-D
plot of the real part of the integrand ¥(x) (see Eq. (3)) over the surface are given in Fig. 5. Note that
the surface plots depict Re(¥(x)) for small portions of the actual integration domains where certain
critical points, which make the largest contributions into the integral result, exist.

Brief explanations for all three scenarios are given as follows:

e (Case 1: Tall buildings are present between the surface and the transmitter & UTD locations. This
yields two critical points of second kind where the level curve of the phase function ¢ (see Eq.
(3)) is tangential to the domain boundary [19]. In other words, the partial derivatives of ¢ satisfy

7é 0, ‘% = 0 at the indicated points. However, most contributions comes from the point located
at the bottom part of the surface, as the interaction surface is usually large enough to make the
contributions from the upper boundary negligible where the magnitude function ¥ declines.

e (Case 2: Transmitter and UTD locations are slightly above the surrounding buildings and line-of-
sight (LOS) path exists through the interaction surface. The intersection point of the LOS path
line and the interaction surface is a stationary phase point or a critical point of first kind. It can

be noticed that two critical points of second kind are present at the boundaries since % £ 0,

g—dy’ = 0 are satisfied at the indicated points. The contributions from the stationary phase points

are generally dominant to those from the critical points of second kind though, especially when the
critical points are sufficiently distant from each other and the wavenumber has a large value [11,19].

e (ase 3: Multiple wavefront contributions come from the receiver site due to the reflections from
the surrounding buildings. The resulting pattern is not intelligible due to the overlap of multiple
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() (b)

(d)

®

Figure 5. Illustration of 3 possible propagation scenarios ((a), (c), (e)) and corresponding Re(¥(z))
(see Eq. (3)) on the interaction surface ((b), (d), (f)). The symbols “x” and “A” denote the locations
of the critical points of first and second kind, respectively.

contributions, therefore, the critical points may not be explicitly indicated. Nevertheless, individual
wavefront pairs still create patterns similar to those in Case 1 and 2.

Note that the corners of the interaction surface may constitute critical points of third kind where
the partial derivatives of ¢ might have discontinuities. However, the contributions from these points
are usually negligible due to the significance of the critical points of first and second kind as well as the
decline of the magnitude function ¥ at the corners when the surface is large.

5. MASSIVE MIMO

Massive MIMO is an improvement of the traditional multi-user MIMO where the number of the
transmitter antennas is much larger than the number of the receivers. In order to serve every user
simultaneously at the same frequency band, transmit beamforming is employed. In this study, a common
beamforming method, the Regularized Zero-Forcing (RZF), is assumed and the network performance is
investigated by computing the average downlink data rate among all the users. The channel matrix (H)

is obtained from the ray-tracing simulations and the individual elements of the matrix are expressed as
oc

v~

J
where H; ;) indicates the coefficient at the ith row and jth column of H; vﬁ-x is the port voltage of

the jth transmitter; and v{¢ is the induced open-circuit voltage of the ith transmitter, obtained from
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Eq. (1). Then the beamforming matrix g can be given as
g=H"(HH" +6)"", §>0, (17)

where (*) is the Hermitian transpose operator; I is the identity matrix; and 0 is a regularization constant.
The downlink data rate for user ¢ can be found by

Di = WlOgQ (1 + SINRZ) :
2
P (Hi)8(.)
10 ,
PY  (Hiogem) +o
n=1
where W is the channel bandwidth; P is the total transmitter power; and o is the noise power

which is calculated as o = 10720-4t1og10(W)  Finally, the average data rate can be expressed as
Dug = 10, Di/10,

SINR; =

; (18)

6. NUMERICAL RESULTS

6.1. Convergence of the Iterative SBR Algorithm

The convergence of the iterative SBR algorithm has been tested in the described urban environment
with a single receiver-transmitter pair. At each iteration, a fixed number of rays were launched from
both sites (300,000 x 2 = 600,000 rays total) and the number of the unique rays (i.e., non-duplicate
rays defined in Section 3), which hit the surface, has been used as the convergence criterion. The
convergence plot is given in Fig. 6. The algorithm has been executed until the 10th iteration where the
increase in the number of rays compared to the previous step was eventually less than 1% (red plot)
and the number of the unique ray paths which reach the surface was around 200,000 (blue plot). In
order to compare the proposed method with the classical techniques, the same scenario was simulated
with the conventional SBR and the total number of ray launches, which yield 200,000 unique ray paths
(as in the iterative SBR case), has been inquired. The investigations have revealed that 10,000,000 ray
launches would be needed in total, in order to capture 200,000 unique rays on the surface. It can be
noticed that the iterative SBR method consists of 11 steps (1 initial + 10 iterations) with 600,000 ray
launches, which indicates 6,600,000 ray launches in total for the entire simulation. Compared to the
conventional SBR (6,600,000 v 10,000,000), the iterative SBR method yields a decent improvement in
terms of computational effort.

00 Iterative SBR Convergence
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Figure 6. Convergence of the iterative SBR algorithm.
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6.2. Validation of the Bidirectional Ray-Tracing for Propagation Near the Optical
Boundaries

In order to validate the accuracy of the bidirectional ray-tracing and to demonstrate the breakdown
of UTD-based diffraction computations in unidirectional ray-tracing simulations, a multiple knife-edge
diffraction scenario has been simulated, and the results have been compared to the Vogler method [20],
which can be considered as a reference. The knife-edges are identical in height and are separated by
identical distances as well. A receiver and a transmitter are located at the optical boundary, and an
interaction surface exists between them. Two different scenarios have been investigated with 2 and 4
knife-edges, respectively. The illustrations of the scenarios are given in Fig. 7.

d= 10m d= 10m

Tx e : ® Rx Tx e : : : : ® Rx
— — |, ||
d d d d d d d
2, 2
1
Surf.
Edge 1 Edge 2 Edge 1 Edge 2 Edge 3 Edge 4
(a) (b)

Figure 7. Illustration of multiple knife-edge diffraction scenarios with (a) 2 edges (b) 4 edges.

The path gain has been used for comparison. The results are shown in Fig. 8.

The results indicate that the bidirectional ray-tracing is in good agreement with the Vogler method.
The difference between the bidirectional ray-tracing and the Vogler method is around 3 dB for 2 edges
and around 7dB for 4 edges. It has been observed that the bidirectional ray-tracing simulation is
insensitive to the changes in the number of the knife-edges as the decline in the path gain mostly occur
due to the increased distance. Nevertheless, this would not affect the accuracy in realistic scenarios
since the attenuation is usually determined by only a few (< 4) dominant edges (i.e., the edges which
are slightly higher than the others). The failure of the unidirectional ray-tracing is evident especially
in the scenario with 4 edges. Although the deviation from the reference is similar to what bidirectional
ray-tracing exhibits for 2 edges, the difference grows very quickly and rises to 17dB for 4 edges, which
is almost 10dB larger than what the bidirectional ray-tracing simulation shows.

Multiple Knife-Edge Diffraction Comparison

I Bidir. ray-tracing
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8

-100 -
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Figure 8. Comparison of bidirectional and unidirectional ray-tracing to Vogler method for two multiple
knife-edge diffraction scenarios.
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6.3. Network Performance

The performance of the massive MIMO network has been characterized by the average downlink data
rate. In order to demonstrate the differences in the network performance under different channel models,
the ITU-R P.1411 rooftop propagation model [21] (which is a significantly improved variation of the well
known COST 231 Walfisch-Tkegami model) is utilized to generate another channel matrix, in addition
to the one obtained by ray-tracing. The data rate has also been calculated for different numbers of
transmitter antennas (i.e., some of the antennas in the array were not active) in order to illustrate how
the data rate changes with respect to the number of the transmitters in the network. The total transmit
power at the base station was assumed as 1 W and the channel bandwidth as 10 MHz. The results are
shown in Fig. 9.

100 Avg. user data rate comparison

—*— Bidir. ray-tracing
—6—ITU-R P.1411

80

60

Data rate (Mbit/sec)

10 20 30 40 50 60 70 80 90 100
Number of TX antennas

Figure 9. Comparison of average user data rate for ray-tracing and empirical channel models.

The results show that increasing the number of the transmitter antennas yields significant
improvements in the performance, as both models indicate a similar behavior. However, the empirical
model (ITU-R P.1411) underestimates the data rate by a large margin. In order to recognize the channel
characteristics which lead to the difference, two parameters are investigated:

(i) Channel Orthogonality: Denoted by M and computed according to the inner product of the
normalized user channels such that

V(i,j) € {1,...,10} x {1,...,10}, i#j,
M = A(’I:I(z,) : I:I(j,:)’)v (19)
where A(.) indicates the arithmetic average.

(ii) Signal and Interference Power: Denoted by S and Z, and computed according to the desired signal
and interference powers at the receiver locations, respectively. S and Z are given as

Vi e {]-7 SR 10}7 §=4 ((H(z,)g(,z))2) )

10
=4 Z(H(i,:)g(:,j))2 : (20)
j=1
Note that the noise power is assumed as constant for all receivers in both models as it only depends
on the bandwidth.

The results are shown in Fig. 10.
The channel orthogonality results show that the directional properties of the user channels are
accurately captured by the empirical model. As a result, both models are in good agreement. On the
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Figure 10. Comparison of bidirectional ray-tracing and ITU-R channel models with respect to
(a) channel orthogonality (b) average signal and interference power at the receiver locations.

other hand, the signal and interference power at the receiver locations are predicted quite differently by
the models. Compared to the I'TU-R model, the signal power is estimated larger while the interference
is estimated to be smaller in the bidirectional ray-tracing simulations. Additionally, the differences
between the two models grow marginally when a larger number of transmitters is employed at the base
station. Such a contrast can be attributed to the disparate directional properties of the channel vectors
in the models and the effectiveness of the precoder over these channels as the number of the transmitters
change. Even though the orthogonality of the channel vectors are similar in both models, the individual
terms of the channel matrix presumably demonstrate a greater distinction according to the bidirectional
ray-tracing model. The channel matrix might even be sparse (i.e., not every transmitter may establish
a link with every receiver) in the ray-tracing simulations, hence, the massive MIMO precoder can
demonstrate a better performance in boosting the signal and suppressing the interference. The key
features of the power plots in Fig. 10 can clarify the difference of the data rate. It can be noticed that
the discrepancy in the signal power is relatively small and the interference figures are almost identical
when 10 transmitters are utilized, yielding only a modest difference in the data rate. The differences
become larger when the number of the transmitters is increased, hence, a comparable growth in the
difference of the data rate can be observed. Beyond 40 transmitter antennas though, the difference of
data rate remains relatively stable where the variation of the data rate becomes mostly dependent on
the variation of the signal power as the interference does not affect the SINR significantly due to the
relative significance of the noise power over the interference. Since the difference of signal power does
not change drastically, the data rate for both models also show similar variation, without any major
fluctuation in the difference.

7. CONCLUSION

The average downlink performance in an urban massive MIMO network was characterized by ray-tracing
simulations. The problem geometry mostly favors rooftop propagation where multiple diffractions near
the optical boundaries might occur. In order to simulate these effects accurately, the bidirectional ray-
tracing method was used. The results were compared to an empirical rooftop propagation model. It was
found that the channel directionality can be modeled accurately with both approaches, but the path
gain might be underestimated in the empirical model. Additionally, a new iterative SBR method, which
addresses the inefficiencies of the traditional SBR, was presented. It was shown that the new algorithm
can provide accurate results with a smaller number of ray launches, which indicates an improvement in
the computation time.
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