Vol. 90
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-03-05
Virtual Synchronous Motor Dynamic Power Decoupling Strategy
By
Progress In Electromagnetics Research C, Vol. 90, 209-224, 2019
Abstract
Due to the existence of power coupling the virtual synchronous motor (VSG) will lead to overshoot fluctuations in the power adjustment process, thus affecting the control performance. Compared to the traditional direct current control inverter based on coordinate transformation, VSG model is more complex and difficult to achieve decoupling. This paper presents a dynamic power decoupling method by studying the coupling relationship between active power and reactive power of VSG. Firstly, the inverter grid-connected model is established, and the power expression is analyzed when the inverter output impedance is negligible. Then the virtual active power and reactive power expressions are obtained through coordinate transformation. Several key state equations and virtual states of the VSG are obtained. The power expression performs small signal perturbation to obtain the dynamic model of the VSG. From this, the dynamic model of the VSG can be analyzed to obtain the coupling relationship between the dynamic powers, and the series power compensation is used to decouple the dynamic power coupling. Finally, the correctness of the theoretical analysis and the effectiveness of the decoupling method are verified by simulation and experiments.
Citation
Xintian Liu, Yucai Li, Yao He, Xinxin Zheng, and Guojian Zeng, "Virtual Synchronous Motor Dynamic Power Decoupling Strategy," Progress In Electromagnetics Research C, Vol. 90, 209-224, 2019.
doi:10.2528/PIERC18102504
References

1. Gao, Y. and Q. Ai, "Hierarchical distributed coordination control of active distribution network with sparse communication in micro-grid networks," Automation of Electric Power System, Vol. 4, 019, 2018.

2. Geng, M., Y. Ding, Y. Wang, et al. "Micro-net-“Organic Cells” in the future energy internet system," Automation of Electric Power Systems, Vol. 41, No. 19, 1-11, 2017.

3. Han, Z.-X., Power System Analysis, 1993.

4. Raj, D. C. and D. N. Gaonkar, "Frequency and voltage droop control of parallel inverters in microgrid," 2016 IEEE 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC), 407-411, 2016.
doi:10.1109/CIEC.2016.7513771

5. Zhong, Q. C. and G. Weiss, "Synchronverters: Inverters that mimic synchronous generators," IEEE Transactions on Industrial Electronics, Vol. 58, No. 4, 1259-1267, 2011.
doi:10.1109/TIE.2010.2048839

6. Natarajan, V. and G. Weiss, "Almost global asymptotic stability of a grid-connected synchronous generator,", arXiv preprint arXiv:1610.04858, 2016.

7. Natarajan, V. and G. Weiss, "Synchronverters with better stability due to virtual inductors, virtual capacitors and anti-windup," IEEE Transactions on Industrial Electronics, Vol. PP, No. 99, 1-1, 2017.

8. Li, D., Q. Zhu, S. Lin, et al. "A self-adaptive inertia and damping combination control of vsg to support frequency stability," IEEE Transactions on Energy Conversion, Vol. 32, No. 1, 397-398, 2017.
doi:10.1109/TEC.2016.2623982

9. Zhong, Q. C., P. L. Nguyen, Z. Ma, et al. "Self-synchronized synchronverters: Inverters without a dedicated synchronization unit," IEEE Transactions on Power Electronics, Vol. 29, No. 2, 617-630, 2014.
doi:10.1109/TPEL.2013.2258684

10. Wu, H., X. Ruan, D. Yang, et al. "Small-signal modeling and parameters design for virtual synchronous generators," IEEE Transactions on Industrial Electronics, Vol. 63, No. 7, 4292-4303, 2016.
doi:10.1109/TIE.2016.2543181

11. Dong, S. and Y. C. Chen, "Adjusting synchronverter dynamic response speed via damping correction loop," IEEE Transactions on Energy Conversion, Vol. PP, No. 99, 1-1, 2017.

12. Qu, K., W. Li, T. Ye, et al. "Decoupled control strategy of LCL inverter based on state feedback," Transactions of China Electrotechnical Society, Vol. 31, No. 20, 130-138, 2016.

13. Peng, Q., H. Pan, Y. Liu, et al. "Design of double closed loop decoupling controller for LCL three phase grid-connected inverter," Journal of China Electrotechnical Society, Vol. 29, No. 4, 103-110, 2014.

14. Ye, Z. and X. Yan, "Analysis of power coupling characteristics of microgrid and decoupling control," Grid Technology, Vol. 40.3, 812-818, 2016.

15. Li, B., L. Zhou, X. Yu, et al. "New control scheme of power decoupling based on virtual synchronous generator," IEEE Power and Energy Conference at Illinois, 1-8, 2016.

16. Li, B., L. Zhou, X. Yu, et al. "Improved power decoupling control strategy based on virtual synchronous generator," Iet Power Electronics, Vol. 10, No. 4, 462-470, 2017.
doi:10.1049/iet-pel.2016.0608

17. Li, W., J. Wang, H. Yang, et al. "Power dynamic coupling mechanism and synchronization frequency resonance suppression strategy of virtual synchronous generator," Proceeding of the CSEE, Vol. 37, No. 2, 381-390, 2017.

18. Akagi, H., H. Watanabe, and M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning, IEEE Press, New Jersey, 2007.
doi:10.1002/0470118938

19. Chen, X., X. Ruan, D. Yang, et al. "Step-by-step controller design of voltage closed-loop control for virtual synchronous generator," IEEE Energy Conversion Congress and Exposition, 3760-3765, 2015.
doi:10.1109/ECCE.2015.7310191

20. Zhang, P., H. Zhao, H. Cai, et al. "Power decoupling strategy based on ‘virtual negative resistor’ for inverters in low-voltage microgrids," IET Power Electronics, Vol. 9, No. 5, 1037-1044, 2016.
doi:10.1049/iet-pel.2015.0137

21. Wu, T., Z. Liu, J. Liu, et al. "A unified virtual power decoupling method for droop-controlled parallel inverters in microgrids," IEEE Transactions on Power Electronics, Vol. 31, No. 8, 5587-5603, 2016.
doi:10.1109/TPEL.2015.2497972

22. De Brabandere, K., B. Bolsens, D. K. J. Van, et al. "A voltage and frequency droop control method for parallel inverters," Pesc Record-IEEE Power Electronics Specialists Conference, 1107-1115, 2004.

23. Erickson, R. W. and D. Maksimovic, Fundamentals of Power Electronics, Springer Science & Business Media, 2007.

24. Hu, S., Principle of Automatic Control, 2001.

25. Li, Y., X. Ruan, D. Yang, et al. "Modeling, analysis and design for hybrid power systems with dual-input DC/DC converter," IEEE Energy Conversion Congress and Exposition, 2009. Ecce., 3203-3210, 2009.