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Virtual Synchronous Motor Dynamic Power Decoupling Strategy

Xintian Liu, Yucai Li*, Yao He, Xinxin Zheng, and Guojian Zeng

Abstract—Due to the existence of power coupling the virtual synchronous motor (VSG) will lead
to overshoot fluctuations in the power adjustment process, thus affecting the control performance.
Compared to the traditional direct current control inverter based on coordinate transformation, VSG
model is more complex and difficult to achieve decoupling. This paper presents a dynamic power
decoupling method by studying the coupling relationship between active power and reactive power of
VSG. Firstly, the inverter grid-connected model is established, and the power expression is analyzed
when the inverter output impedance is negligible. Then the virtual active power and reactive power
expressions are obtained through coordinate transformation. Several key state equations and virtual
states of the VSG are obtained. The power expression performs small signal perturbation to obtain
the dynamic model of the VSG. From this, the dynamic model of the VSG can be analyzed to obtain
the coupling relationship between the dynamic powers, and the series power compensation is used
to decouple the dynamic power coupling. Finally, the correctness of the theoretical analysis and the
effectiveness of the decoupling method are verified by simulation and experiments.

1. INTRODUCTION

Nowadays, energy crisis and environmental problems are becoming more and more serious. Distributed
generation technology is an effective means to solve this problem [1]. In traditional power systems,
power grid connection is realized by synchronous machines [2]. With more and more distributed
energy integrated into the power grid [3], the structure of a traditional power system is affected so that
the distributed energy needs to achieve power regulation [4], and the concept of virtual synchronous
generator (VSG) is proposed [5]. VSG fully simulates the characteristics of synchronous motors and is
expected to be an effective way to solve the security problems caused by large amounts of distributed
energy interconnection. Since its concept was put forward, it has attracted much attention [6–11].

The research on VSG is mainly focused on the improvement of inverter control performance.
Reference [9] points out that the phase-locked loop can be omitted in the control system because of the
synchronization characteristics of virtual synchronous motor, so that the whole control system structure
is simplified, and the system performance is greatly improved. Reference [10] shows that active and
reactive loops are approximately decoupled after small signal modeling, so the parameters of active and
reactive loops can be designed separately, which greatly simplifies the parameter design. Reference [11]
proposes a method of adding damping correction loop in VSG algorithm, which adds a parameter to
the damping coefficient. By adjusting this parameter, the response speed of power regulation can be
improved.

However, these methods do not consider the coupling between active power and reactive power.
In [9], the coupling between active and reactive powers is not considered, resulting in coupling power
fluctuation and steady-state error in power regulation. The parameter design method is proposed in [10]
when the inductance is much larger than the resistance, i.e., X � R. The authors analyze that the
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active power and reactive power are approximately decoupled when the inductance is much larger than
the resistance X � R, but the power is not completely decoupled at this time. The authors only make
an approximate analysis, so the power coupling is still dynamic. State characteristics are influential.
The optimization method of virtual synchronous motor control proposed in [11] is also based on the
condition that the inductance is much larger than the resistance X � R. It is pointed out that the
coupling effect of power regulation after adding damping correction loop is weakened properly, but the
reasons are not analyzed in depth.

Aiming at the decoupling problem, most of the current-controlled inverters based on coordinate
transformation are studied. Reference [12] aims at the coupling between the dq axes of LCL filter grid-
connected inverters. The components of other axes information are injected into each axis controller,
and the components injected are equal to the coupling magnitude produced by the controlled object,
but the direction is reversed, so that decoupling can be realized. Reference [13] also studies the dynamic
coupling between the dq axes of the LCL grid-connected inverter. Three-loop feedback compensation
method is used to effectively suppress the coupling overshoot in the process of dynamic power regulation.
However, for VSG, its model is so complex that the decoupling is difficult to achieve. At present, most of
the decoupling research on VSG is static coupling [14–16]. There are few studies on dynamic coupling.
Reference [17] analyzes the dynamic coupling between active power P and reactive power Q according
to the instantaneous power theory. However, due to the complexity of the model used, the coupling
relationship is also complicated, and the main reason of affecting the dynamic coupling is not pointed
out, so this model is not suitable for decoupling research.

In view of the above problems, the VSG dynamic coupling model established in this paper has a
clear structure, which can effectively solve the problem that the VSG coupling model is complex and
difficult to analyze the coupling causes, and has the advantage of easy decoupling.

Firstly, the basic principle of VSG is analyzed, and then the static coupling relationship between
active power and reactive power of virtual synchronous motor is analyzed according to the circuit theory.
The expression of virtual active power and reactive power is obtained by coordinate transformation. On
this basis, the dynamic coupling of the system is modeled and analyzed by small signal analysis method,
and the decoupling in the dynamic regulation process is realized by series compensation method. Finally,
the theoretical analysis is verified by simulation and experiment.

2. COUPLING CHARACTERISTICS OF VSG

2.1. VSG Power Loop and Its Control Strategy

VSG DC-side voltage Vin is defined. Inverters are converted into three-phase alternating current by a
three-phase bridge arm and an LC filter. uabc and iabc are output voltage and current of inverter. The
output active power P and reactive power Q of the inverter can be calculated by the instantaneous
power theory [18] after the transformation of uabc and iabc by Park. The expression is⎧⎪⎨

⎪⎩
P =

3
2
(udid + uqiq)

Q =
3
2
(uqid − udiq)

(1)

In the formula, ud and uq are the active and reactive components of uabc in a dq coordinate system
after Park transformation. id and iq are the active and reactive components of iabc. The whole control
system consists of inner loop and outer loop. The outer loop is VSG algorithm as shown in Figure 1 [5].
The inner loop is PR controller.

VSG algorithm mainly includes active power control loop and reactive power control loop. Active
power loop mainly realizes active-frequency control, simulates the rotor motion equation of synchronous
motor, realizes primary frequency modulation and inertia regulation, while reactive power-voltage
control loop mainly simulates the excitation equation of the synchronous motor and realizes the primary
voltage regulation characteristic of the synchronous motor. According to Figure 1, the main equations
of VSG can be obtained as shown below

J
dω

dt
= Tset − T − Dp(ω − ωn) (2)
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Figure 1. VSG algorithm.

θ =
∫

ωdt (3)

T =
P

ωn
(4)

K
dMf if

dt
= Qset − Q + Dq(Vn − Vo) (5)

In the formula, J is the moment of inertia, Dp the damping coefficient, ωn the mesh side synchronous
angular velocity, ω the reference angular velocity, Tset the mechanical torque, T the electromagnetic
torque, K the integral coefficient, Qset the set value of reactive power, Q the output reactive power of
inverter, Dq the droop coefficient of reactive loop, Vn the rated voltage amplitude, and Vo the output
voltage amplitude of inverter.

According to the active power loop, the phase angle θ and angular velocity ω can be calculated,
and the voltage information Mf if can be calculated by the reactive power loop. The electromotive
force reference value e transmitted to the inner loop of the VSG loop can be calculated as shown in
Equation (6). ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ea = Mf ifω sin θ

eb = Mf ifω sin
(

θ − 2π
3

)

ec=Mf ifω sin
(

θ − 4π
3

) (6)

In order to improve the tracking accuracy [19], the inner loop adopts the PR controller, and the
filtered inductor current signal is used as the control amount. According to the LC filter circuit structure,
the following formula can be obtained.

e − uo = L
di

dt
+ iR (7)

where e is the inverter terminal voltage, uo the inverter output voltage, L the filter inductor, R the
parasitic resistance, and i the inductor current. Calculate the reference value i of the inductor current
il according to Equation (7), and then obtain the error signal by collecting the inductor current in the
circuit. The error signal is sent to the inner loop PR controller, and the PR controller can perform
no-difference control on the AC signal.

GPR(s) = KP +
2Krs

s2 + ω2
o

(8)
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Figure 2. The struct graphic of whole system.

where Kp is the proportional coefficient, Kr the resonance coefficient, and ω0 the resonant frequency.
The error signal is passed through the PR controller to obtain the SVPWM signal for driving the IGBT,
and the whole control system structure is shown in Figure 2.

2.2. Coupling Analysis

In order to analyze the dynamic coupling characteristics of the VSG, the first step must be to obtain a
dynamic coupling model of the VSG.

Figure 3 shows the power flow graph of the inverter grid-connected circuit considering the inverter
output impedance and grid-connected line impedance. In Figure 3, Zo is the inverter system output
impedance, Z the grid-connected line impedance, E the inverter output voltage, and its phase angle is
δ. U is the grid side voltage, and its phase angle is 0.

0U

oZ Z

E

θ

δ

Figure 3. The graphic of power flow.

According to the structure diagram shown in Figure 2, the expression of Zo can be obtained. Let
the transfer function of KSVPWM in Figure 2 be GSVPWM (s), and the gain expression can be expressed
by the following formula [20].

GSVPWM (s) =
(1.5Ts)2s2 − 6(1.5Ts)s + 12
(1.5Ts)2s2 + 6(1.5Ts)s + 12

(9)

where Ts is the switching period of SVPWM, so Zo can be obtained from the Mason gain formula.

Zo =
uo

io
=

−(Ls + R)Ls

(LCs2 + 1)(Ls + R) + GPR(s)GSV PWM(s)(LCs2 + CRs + 1)
(10)

According to the relevant parameters of Table 1, the Bode diagram of Zo can be obtained as shown
in Figure 4. It can be seen from Figure 4 that the amplitude of the system impedance is very small at
the power frequency of 50 Hz, so when calculating the impedance of the grid connection line can ignore
the output impedance of the system. At this time, the impedance of the grid in the power flow diagram
shown in Figure 3 is only Z, and there are Z∠θ = R + jX , where R and X are the grid-connected line
resistance and inductive reactance, so the power injected into the grid can be expressed below.⎧⎪⎨

⎪⎩
P =

E

R2 + X2
[R(E − U cos δ) + XU sin δ]

Q =
E

R2 + X2
[−RU sin δ + X(E − U cos δ)]

(11)
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Figure 4. The bode graphic of system impedance.

Table 1. Three-phase VSG parameters.

Parameter value
Input voltage Uin/V 700
Grid voltage Ug/V 220
Output power Po/kW 10
Power frequency f/Hz 50
P-F droop coefficient Dp 8
Damping coefficient J 0.001
Reactive loop coefficient K 10000
Resonance coefficient Kr 300
Filter Inductor L1/mH 1.285
Parasitic resistance R1/Ω 0.3
Filter capacitor C/uF 50
Grid-connected inductor L2/mH 1.285
Grid-connected resistor R/Ω 0.3
Q-U drooping coefficient Dq 321
Proportion factor Kp 0.5
Steady state power angle δn 0.005

If the small signal is directly made at this time, the obtained dynamic coupling model will be too
complicated, which makes decoupling difficult to implement. Therefore, the coordinate transformation
can be done first to obtain the virtual work expression, and the transformation method is as follows [21]{

P ′ = P sin θ − Q cos θ

Q′ = P cos θ + Q sin θ
(12)

where θ is the impedance angle of the grid-connected line, and cos θ = R/Z, sin θ = X/Z [22].



214 Liu et al.

Equation (13) can be obtained by Equations (11) and (12)⎧⎪⎪⎨
⎪⎪⎩

P ′ =
EU sin δ

Z

Q′ =
E(E − U cos δ)

Z

(13)

In the formula, δ is the power transmission angle of the grid connection, which can be obtained by
the following formula

δ =
∫

ω − ωgdt (14)

In the formula, ω is the inverter output voltage angular frequency, and ωg is the grid side voltage
angular frequency.

Figure 5. The main circuit graphic with virtual power.

Figure 5 shows the structure of the main circuit after the coordinate transformation is added. At
this time, the power fed back to the VSG algorithm is the virtual active and reactive powers, so the
power values in Equations (2) and (5) also become virtual power, as follows

J
dω

dt
=

P ′
set

ω
− P ′

ω
− Dp(ω − ωn) (15)

K
dMf if

dt
= Q′

set − Q′ + Dq(Vn − Vo) (16)

At this point, the small-signal analysis can be used to obtain the dynamic coupling model of
the system. Perform small signal disturbances on the variables E, δ, P ′, Q′, P ′

set, Q′
set, ω, Mf if in

Equations (6), (13)–(16), then eliminate the DC amount on both sides of the equation, ignore the
disturbance amount of more than two times [23], and consider the approximate relationship cos δ̂ ≈ 1,
sin δ̂ ≈ δ̂ to obtain the following equation, where δn is the power angle at steady state.

P̂ ′
set

ωn
− Dpω̂ − P̂ ′

ωn
= J

dω̂

dt
(17)

Q̂′
set − DqÊ − Q̂′ = K

d ˆMf if
dt

(18)
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δ̂ =
∫

ω̂dt (19)

Ê ≈ ωn
ˆMf if + ω̂n (20)

P̂ ′ =
3UE

Z
cos δnδ̂ +

3U
Z

sin δnÊ (21)

Q̂′ =
3(2E − U cos δn)

Z
Ê +

3EU

Z
sin δnδ̂ (22)

The Laplace transform of Equations (17)–(19) yields the following equation

P̂ ′
set

ωn
− P̂ ′

ωn
= (Js + Dp)ω̂ (23)

Q̂′
set − Q̂′ = (Ks + Dq) ˆMf if (24)

δ̂ =
1
s
ω̂ (25)

According to Eqs. (20)–(25), the dynamic coupling model structure diagram can be obtained as
shown in Figure 6. The coupling relationship between the active power loop and reactive power loop
can be seen, and the coupling amount is related to the voltage amplitude E, steady state power angle
δn, and grid-connected impedance Z.
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Figure 6. The dynamical coupling model.

3. DECOUPLING STRATEGY

For the coupling structure diagram shown in Figure 6, series compensation can be introduced to decouple
the dynamic coupling.

The system shown in Figure 7 is a system with a simplified structure of the dynamic coupling
model of Figure 6 and introduced into the series compensation system. The system is a two-input and
two-output system. If the closed loop of the system can be decoupled, the open-loop transfer function
is a diagonal array [24], i.e., the output of the input X1(s) to Y2(s) in the dotted line frame is 0, and
the output of the input X2(s) to Y1(s) is also 0. From the figure, it can be concluded that the input
X1(s) to Y2(s) output is zero and needs to meet the following formula.

Gc21(s)G2(s) + G21(s) + G2(s) = 0 (26)

Can be solved
Gc21(s) = −[G21(s) + G2(s)]/G2(s) (27)
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Figure 7. The struct graphic with series compensation.

For the same reason, the output of input X2(s) to Y1(s) is zero, and the following formula needs to be
satisfied.

Gc12(s)[G1(s) + G12(s)] + G12(s) = 0 (28)

Equation (29) can be derived from Equation (28).
Gc12(s) = −G12(s)/[G1(s) + G12(s)] (29)

Therefore, the structure diagram shown in Figure 6 can be solved according to series compensation.

Gc21(s) = −3UE sin δn

Zs

Z

3(2E − U cos δn)
− 1 (30)

VSG generally has E ≈ U in power regulation, so Equation (30) can be simplified to

Gc21(s) ≈ − E sin δn

s(2 − cos δn)
− 1 (31)

where E is the maximum value of the inverter output voltage of 311 V, and δn is the power angle at
steady state, which can be obtained by integrating the difference between the inverter output voltage
angular frequency and the grid voltage angular frequency.
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Figure 8. The dynamical model with series compensation added.
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Equation (32) can be derived for the same reason

Gc12(s) = −3U sin δn

Z

Zs

3UE cos δn + 3U sin δns
(32)

From U ≈ E, Equation (32) can be simplified to

Gc12(s) ≈ − sin δns

E cos δn + s cos δn
(33)

Equations (31) and (33) are the compensation amounts of the dynamic decoupling described in
this paper. Figure 8 shows the system structure diagram after adding the series compensation to the
VSG dynamic model.

4. SYSTEM STABILITY ANALYSIS

4.1. Active Loop Stability

The small-signal model shown in Figure 6 can be viewed as a two-input two-output system. When
analyzing the performance of the active loop, the reactive power signal can be regarded as a disturbance
signal and set to zero [25], so the small-signal model shown in Figure 6 can be simplified to Figure 9.
According to Figure 9, the active power closed-loop transfer function can be obtained.

G(s)rpl =
a1s

2 + b1s + c1

d1s3 + e1s2 + f1s + g1
(34)

Among them ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = 3UZK sin δn

b1 = 3UDqZ sin δn + 3UEZK cos δn + 9Uωn(2E − U cos δn) sin δn

c1 = 3UE cos δnZDq + 9UE cos δnωn(2E − U cos δn) − 9U2E sin2 δnωn

d1 = Z2KωnJ

e1 = Z2KωnDp + ωnJZ2Dq + 3(2E − U cos δn)ω2
nJZ + 3U sin δnZK

f1 = ωnDpZ
2Dq + 3Zω2

nDp(2E − U cos δn) + 3U sin δnDqZ

+3UEZK cos δn + 9U sin δnωn(2E − U cos δn)

g1 = 3UE cos δnZDq + 9UE cos δnωn(2E − U cos δn) − 9U2E sin2 δnωn

(35)
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When the series compensation decoupling is added, the active power loop graph can be obtained
as shown in Figure 10, and the closed loop transfer function of the active loop is

G(s)dapl =
3UE cos δn + 3U sin δns

ZωnJs2 + (ωnDpZ + 3U sin δn)s + 3UE cos δn
(36)

It can be found that the closed loop pole of the active loop at this time is

Zadpl =
−(ωnDpZ + 3U sin δn) ± √

(ωnDpZ + 3U sin δn)2 − 12ZωnJUE cos δn

2ZωnJ
(37)

4ac = 12ZωnJUE cos δn (38)

In formula (38), δn does not exceed 90 degrees [10] when it is connected to the grid, so that
Equation (38) greater than zero is constant, i.e., the closed loop pole of the active loop after decoupling
is always located in the left half axis after series compensation, and the active loop remains stable for
any parameter changes.

The root trajectory changes when the impedance Z transform is not decoupled and decoupled are
shown in Figures 11(a) and 11(b). As shown, the poles of the undecoupled state and decoupled state are
distributed on the left side of the 0 axis, i.e., the stability of the active loop after series compensation
does not change.
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Figure 11. Active power loop root locus. (a) The root locus in undecoupled mode with Z changed.
(b) The root locus plot in decoupled mode with Z changed.

4.2. Reactive Loop Stability

Similarly, for the two-input and two-output system shown in Figure 6, when analyzing the reactive
undecoupled loop, the active power reference can be regarded as a disturbance and set to zero. At this
time, the reactive loop is simplified as shown in Figure 12.
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According to Figure 12, the reactive power transfer function at this time can be obtained as

G(s)rpl =
a2s

2 + b2s + c2

d2s3 + e2s2 + f2s + g2
(39)

Among them⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2 = 3ω2
nJZ(2E − U cos δn)

b2 = 3ω2
nDpZ(2E − U cos δn)

c2 = 9ωnUE cos δn(2E − U cos δn) − 9U2Eωn sin2 δn

d2 = Z2KωnJ

e2 = 3UZK sin δn + Z2ωnJDq + Z2KωnDp + 3ω2
nJZ(2E − U cos δn)

f2 = Z2ωnDpDq + 3UEZK cos δn + 3U sin δnZDq + 3ω2
nDpZ(2E − U cos δn)

g2 = 3UE cos δnZDq + 9ωnUE cos δn(2E − U cos δn) − 9U2Eωn sin2 δn

(40)

The reactive power loop after adding series compensation decoupling is shown in Figure 13.
At this time, the closed loop transfer function of the reactive loop is

G(s)drpl =
3ωn(2E − U cos δn)

KZs + DqZ + 3ωn(2E − U cos δn)
(41)

The closed loop pole of the reactive loop is

Zdrpl = −DqZ + 3ωn(2E − U cos δn)
KZ

(42)

It can be seen from Equation (42) that the closed loop pole of the reactive loop at this time is
always true for any parameter change pole less than 0, which means that the reactive loop is stable for
any parameter change.

The root trajectory of the reactive power loop undecoupled state and the series compensation
decoupling state with impedance Z changed are shown in Figures 14(a) and 14(b). The comparison
graph shows that adding series compensation does not change the system stability. When there are
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Figure 14. Reactive power loop root locus. (a) The root locus plot in undecoupled mode with Z
changed. (b) The root locus plot in decoupling mode with Z changed.

three poles in the coupling, one pair of conjugate poles is distributed near the zero axis, and after the
decoupling is added, only one pole is distributed on the left side of the 0 axis, and the stability is
enhanced.

5. SIMULATION AND EXPERIMENTAL VERIFICATION

5.1. Simulation Analysis

In order to verify the above analysis results, the correctness of the simulation argumentation analysis
and the effectiveness of the decoupling method are established in MATLAB/Simulink. The parameters
are shown in Table 1.

Figure 15(a) shows the simulation of the grid-connected line resistance R = 0.3Ω when the relative
inductance is not negligible. The active power P is set to 5 kW at 0.2 s and set to 0W at 0.5 s. At
this time, a large coupling overshoot occurs in the reactive power, and a steady state error occurs at
steady state, in which the control is invalid for the control system at this time. Figure 15(b) shows the
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R = 0.3Ω. The reactive power set to 5 kW then decrease to 0.
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compared plot when active power regulation. (b) The current graphic when active power regulation. (c)
R = 0.3Ω. The compared plot when reactive power regulation. (d) The current graphic when reactive
power regulation.

simulation graph when the reactive power is set to 5 kVar at 0.2 s and 0 Var at 0.5 s. It can be seen from
the figure that the active power also has a large coupling overshoot during dynamic adjustment.

Figure 16(a) shows the simulation graph when the active power is set to 5 kW at 0.2 s and 0 W at
0.5 s after the coordinate transformation. The active power and reactive power of the feedback control
algorithm are both virtual active and reactive. It can be seen from the graph that the virtual reactive
power coupling overshoot is effectively suppressed, and the coupling steady-state error during active
adjustment can also be eliminated. However, the dynamic coupling at this time is not completely
eliminated. Q′

2 is a simulation result graph after increasing the series compensation. It can be seen that
the coupling overshoot is completely suppressed, which proves the correctness of the dynamic coupling
analysis and the effectiveness of the decoupling method, and Figure 16(b) shows the inverter output
current graph at power regulation at this time.

Figure 16(c) shows the simulation results when the reactive power is set to 5 kVar at 0.2 s and 0Var
at 0.5 s. P ′

1 is the simulation graph after increasing the coordinate transformation. It can be seen from
the figure that the power is active at this time. The power dynamic coupling overshoot is reduced by
nearly 65%, and P ′

2 is the simulation graph after the series compensation decoupling according to the
analysis of Section 3. It can be seen that the dynamic coupling overshoot at this time is also effectively
suppressed. Figure 16(d) shows the current graph when the power is adjusted.

5.2. Experimental Analysis

In order to verify the theoretical analysis and simulation results, an experimental platform was built.
Figure 17 shows the experimental platform. The main control DSP uses TMS320F2812. The sampling
frequency is 20 kHz, and the switching frequency is 20 kHz. Figure 19(a) shows the voltage and current
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Figure 17. The experiment platform.
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waveforms during the grid-connected process.
Figure 18(a) shows the power adjustment pattern and the output voltage and current graph when

no decoupling measures are applied. The active power is set to 5 kW at 1 s, and the reactive power is
set to 5 kVar at 2 s. It can be seen from the experimental diagram that the coupling overshoot is large
during the power adjustment process when no decoupling measures are applied, which seriously affects
the dynamic performance. Figure 18(b) shows the power adjustment waveform after adding decoupling
measures. The active power is set to 2 kW at 1.5 s, and the reactive power is set to 5 kW at 3.5 s. The
reactive power set to 5 kVar at 5 s, and the reactive power set to 0 at 6 s. It can be seen from the
experimental graph that the coupling overshoot is effectively suppressed, thus verifying the correctness
of the theoretical analysis.

Figure 19(b) shows the current-voltage graph when only active power is output. It can be seen
that the phase angle between voltage and current is 0. Figure 19(c) shows the voltage-current graph
when only reactive power is output. At this time, there is a phase angle difference between them.

6. CONCLUSION

Distributed energy generation technology is an effective solution to today’s energy crisis and
environmental problems, but excessive distributed energy grids have a great impact on the structure
of the grid. VSG technology is an effective way to solve this problem. However, due to the coupling
between powers in the VSG power regulation process, the dynamic performance of the system is affected.
This paper analyzes the main factors causing power coupling and adopts decoupling measures. The
conclusions are as follows:

(1) When the relative inductance of the grid-connected line is not negligible, the degree of coupling is
greatly increased, and the occurrence of steady-state error causes the failure of the control.

(2) The coordinate transformation obtained by grid-connected impedance can suppress the dynamic
coupling overshoot to some extent, eliminate the coupling caused by the resistor, eliminate the
steady-state error, and improve the power dynamic adjustment performance of the feedback back
VSG algorithm.

(3) The small-signal analysis method is used to obtain the coupling relationship between the active
loop and reactive loop, so that the entire VSG small-signal model can be obtained. The coupling
between the loops can be seen from the entire VSG structure diagram, and decoupling can be
achieved by series compensation.
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