Vol. 87
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-10-27
A New Non-Convex Regularized Sparse Reconstruction Algorithm for Compressed Sensing Magnetic Resonance Image Recovery
By
Progress In Electromagnetics Research C, Vol. 87, 241-253, 2018
Abstract
Compressed sensing (CS) relies on the sparse priorin posed on the signal to solve the ill-posed recovery problem in an under-determined linear system (ULS). Motivated by the theory, this paper proposes a new algorithm called regularized re-weighted inverse trigonometric smoothed function approximating L0-norm minimization (RRITSL0) algorithm, where the inverse trigonometric (IT) function, iteratively re-weighted scheme and regularization mechanism constitute the core of the proposed RRITSL0 algorithm. Compared with other state-of-the-art functions, our proposed IT function cluster can better approximate the L0-norm, thus improving the reconstruction accuracy. And the new re-weighted scheme we adopted can promote sparsity and speed up convergence. Moreover, the regularization mechanism makes the RRITSL0 algorithm more robust against noise. The performance of the proposed algorithm is verified via numerical experiments with additive noise. Furthermore, the experiments prove the superiority of the RRITSL0 algorithm in magnetic resonance (MR) image recovery.
Citation
Xiangjun Yin, Linyu Wang, Huihui Yue, and Jianhong Xiang, "A New Non-Convex Regularized Sparse Reconstruction Algorithm for Compressed Sensing Magnetic Resonance Image Recovery," Progress In Electromagnetics Research C, Vol. 87, 241-253, 2018.
doi:10.2528/PIERC18072101
References

1. Chen, Z., Y. Fu, Y. Xiang, and R. Rong, "A novel iterative shrinkage algorithm for CS-MRI via adaptive regularization," IEEE Signal Processing Letters, Vol. 99, 1-1, 2017.
doi:10.1109/LSP.2017.2647810

2. Yazdanpanah, A. P. and E. E. Regentova, "Compressed sensing MRI using curvelet sparsity and nonlocal total variation: CS-NLTV," Electronic Imaging, Vol. 2017, No. 13, 5-9, 2017.
doi:10.2352/ISSN.2470-1173.2017.13.IPAS-197

3. Candes, E. J., "Compressive sampling," IEEE Proceedings of the International Congress of Mathematicians, 2006.

4. Candes, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30, 2008.
doi:10.1109/MSP.2007.914731

5. Li, S., H. Yin, and L. Fang, "Remote sensing image fusion via sparse representations over learned dictionaries," IEEE Transactions on Geoscience & Remote Sensing, Vol. 51, No. 9, 4779-4789, 2013.
doi:10.1109/TGRS.2012.2230332

6. Zhang, J., D. Zhao, F. Jiang, and W. Gao, "Structural group sparse representation for image compressive sensing recovery," Data Compression Conference, Vol. 6, No. 3, 331-340, 2013.

7. Josa, M., D. Bioucas, and M. A. T. Figueiredo, "A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration," IEEE Transactions on Image Processing, Vol. 16, No. 12, 2992-3004, 2007.
doi:10.1109/TIP.2007.909319

8. Beck, A. and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," Siam Journal on Imaging Sciences, Vol. 2, No. 1, 183-202, 2009.
doi:10.1137/080716542

9. Ghadimi, E., A. Teixeira, and I. Shames, "Optimal parameter selection for the alternating direction method of multipliers (ADMM): quadratic problems," IEEE Transactions on Automatic Control, Vol. 60, No. 3, 644-658, 2015.
doi:10.1109/TAC.2014.2354892

10. Ramdas, A. and R. J. Tibshirani, "Fast and flexible ADMM algorithms for trend filtering," Journal of Computational and Graphical Statistics, Vol. 25, No. 3, 839-858, 2014.
doi:10.1080/10618600.2015.1054033

11. Wright, S. J., R. D. Nowak, and M. A. T. Figueiredo, "Sparse reconstruction by separable approximation," IEEE International Conference on Acoustics, Speech and Signal Processing, 2479-2493, 2008.

12. Ye, X., W. Zhu, A. Zhang, and Q. Meng, "Sparse channel estimation in MIMO-OFDM systems based on an improved sparse reconstruction by separable approximation algorithm," Journal of Information & Computational Science, Vol. 10, No. 2, 609-619, 2013.

13. Figueiredo, M. A. T., R. D. Nowak, and S. J.Wright, "Gradient projection for sparse reconstruction: Application To Compressed Sensing And Other Inverse problems," IEEE Journal of Selected Topics in Signal Processing, Vol. 1, No. 4, 586-597, 2008.
doi:10.1109/JSTSP.2007.910281

14. Zibulevsky, M. and M. Elad, "L1-L2 optimization in signal and image processing," IEEE Signal Processing Magazine, Vol. 27, No. 3, 76-88, 2010.
doi:10.1109/MSP.2010.936023

15. Pant, J. K., W. S. Lu, and A. Antoniou, "New improved algorithms for compressive sensing based on Lp NORM," IEEE Transactions on Circuits & Systems II Express Briefs, Vol. 61, No. 3, 198-202, 2014.
doi:10.1109/TCSII.2013.2296133

16. Ye, X., W. P. Zhu, A. Zhang, and J. Yan, "Sparse channel estimation of MIMO-OFDM systems with unconstrained smoothed L0 -norm-regularized least squares compressed sensing," Eurasip Journal on Wireless Communications & Networking, Vol. 2013, No. 1, 282, 2013.
doi:10.1186/1687-1499-2013-282

17. Zhang, Y., B. S. Peterson, G. Ji, and Z. Dong, "Energy preserved sampling for compressed sensing MRI," Computational and Mathematical Methods in Medicine, Vol. 2014, No. 5, 546814, 2014.

18. Zhang, Y., S. Wang, G. Ji, and Z. Dong, "Exponential wavelet iterative shrinkage thresholding algorithm with random shift for compressed sensing magnetic resonance imaging," Information Sciences, Vol. 10, No. 1, 116-117, 2015.

19. Mohimani, H., M. Babaie-Zadeh, and C. Jutten, "A fast approach for overcomplete sparse decomposition based on smoothed L0 norm," IEEE Transactions on Signal Processing, Vol. 57, No. 1, 289-301, 2009.
doi:10.1109/TSP.2008.2007606

20. Zhao, R., W. Lin, H. Li, and S. Hu, "Reconstruction algorithm for compressive sensing based on smoothed L0 norm and revised newton method," Journal of Computer-Aided Design & Computer Graphics, Vol. 24, No. 4, 478-484, 2012.

21. Candes, E. J., M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by re-weighted L1 minimization," Journal of Fourier Analysis and Applications, Vol. 14, No. 5, 877-905, 2008.
doi:10.1007/s00041-008-9045-x

22. Pant, J. K., W. S. Lu, and A. Antoniou, "Reconstruction of sparse signals by minimizing a re-weighted approximate L0-norm in the null space of the measurement matrix," IEEE International Midwest Symposium on Circuits and Systems, 430-433, 2010.

23. Zibetti, M. V. W., C. Lin, and G. T. Herman, "Total variation superiorized conjugate gradient method for image reconstruction," Inverse Problems, Vol. 34, No. 3, 2017.

24. Wen, F., Y. Yang, P. Liu, R. Ying, and Y. Liu, "Efficient lq minimization algorithms for compressive sensing based on proximity operator," Mathematics, 2016.

25. Ye, X. and W. P. Zhu, "Sparse channel estimation of pulse-shaping multiple-input-multiple-output orthogonal frequency division multiplexing systems with an approximate gradient L2SL0 reconstruction algorithm," Iet Communications, Vol. 8, No. 7, 1124-1131, 2014.
doi:10.1049/iet-com.2013.0571