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A New Non-Convex Regularized Sparse Reconstruction Algorithm
for Compressed Sensing Magnetic Resonance Image Recovery

Xiangjun Yin, Linyu Wang, Huihui Yue*, and Jianhong Xiang

Abstract—Compressed sensing (CS) relies on the sparse priorin posed on the signal to solve the
ill-posed recovery problem in an under-determined linear system (ULS). Motivated by the theory,
this paper proposes a new algorithm called regularized re-weighted inverse trigonometric smoothed
function approximating L0-norm minimization (RRITSL0) algorithm, where the inverse trigonometric
(IT) function, iteratively re-weighted scheme and regularization mechanism constitute the core of
the proposed RRITSL0 algorithm. Compared with other state-of-the-art functions, our proposed IT
function cluster can better approximate the L0-norm, thus improving the reconstruction accuracy. And
the new re-weighted scheme we adopted can promote sparsity and speed up convergence. Moreover, the
regularization mechanism makes the RRITSL0 algorithm more robust against noise. The performance
of the proposed algorithm is verified via numerical experiments with additive noise. Furthermore,
the experiments prove the superiority of the RRITSL0 algorithm in magnetic resonance (MR) image
recovery.

1. INTRODUCTION

MR image recovery [1, 2] plays an essential role in clinical diagnosis. However, at present, the quality
of MR image recovery needs to be improved. Fortunately, CS [3, 4], as a new sampling technology, was
introduced to MR imaging to significantly improve image recovery accuracy. The CS first acquires very
few k-space data (also known as Fourier coefficients) to shorten the image recovery time, and then it
reconstructs the MR image from the undersampled data. Image sparsity is assumed to make it possible
that we can recover the underlying image from only a few Fourier coefficients. Therefore, we need to
find an image that is sparse in a transform domain to fit the undersampled k-space data. MR images
can be expressed sparsely by function transformation, such as DCT, Fourier, Wavelet, Curvelet, and
Gabor [5], which makes it possible for CS to apply to MR image recovery. Fig. 1 shows the framework
of CS model in noiseless case, if we consider the case of noise, then the CS model for MR image recovery
can be written as,

y = Ax + b (1)

where y ∈ R
m is the compressed signal (or image), and x ∈ R

n is the original signal (or image), m � n.
A = ΦΨ ∈ R

m×n is a sensing matrix, where Φ ∈ R
m×n represents an observation matrix, which is

generally composed of a Gaussian matrix or a Bernoulli matrix or a Topplitz matrix. Furthermore,
Ψ ∈ R

n×n is a basis function, which is made of DWT basis, DCT basis, etc. b ∈ R
m denotes noise that

obeys a Gaussian distribution.
From Eq. (1), we try to recover the sparse signal x from given {y,A}. In this case, the sensing

matrix A contains more columns than rows, which means that there will be more than one solution that
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Figure 1. Framework of CS model in the noiseless case.

satisfies the constrain ||Ax − y||22 ≤ ε (ε is a very small constant). This makes the recovery of sparse
signal x an ill-posed problem. Luckily, since the target signal itself is sparse, the most straightforward
method is to use its sparsity to improve the problem. So this problem is transformed into solving the
L0-norm minimization problem.

arg min
x∈Rn

||x||0 s.t. ||Ax − y||22 ≤ ε (2)

where || · ||0 is L0-norm, which represents the number of nonzero elements (sparsity). In order to
minimize sparsity ||x||0 and constraint term ||Ax− y||22, this optimization problem can be transformed
from a constrained problem to an unconstrained problem which can be reformulated as a regularized
least squares problem (RLSP) [6],

arg min
x∈Rn

1
2
||Ax − y||22 + λ||x||0 (3)

Unfortunately, ||x||0 in Eqs. (2) and (3) are not directly processable, because the gradient of ||x||0
cannot be solved, resulting in uncertainty of optimization direction and cannot be optimized. Therefore,
only ergodic method can be used to solve L0-norm, thus greatly increasing the computational complexity.
In fact, this problem is usually relaxed into other forms. For example, ||x||0 is replaced with Ω(x).

arg min
x∈Rn

1
2
||Ax − y||22 + λΩ(x). (4)

For Eq. (4), there are many popular techniques for solving this problem. ISTA [7], FISTA [8],
ADMM [9, 10], SpaRSA [11], ISpaRSA [12] and BPDN [13, 14] replace Ω(x) with L1-norm or re-
weighted L1-norm. In noiseless case, L1-norm is equivalent to L0-norm, and L1-norm is the only norm
with sparsity and convexity, hence, it can be optimized by convex optimization methods. However, in
noisy case, L1-norm is not exactly equivalent to L0-norm, so the effect of promoting sparsity is not
obvious. Therefore, in the case of noise, only the algorithm that optimizes the approximation of L0-
norm can improve the accuracy of the algorithm. In [15], the authors proposed a new algorithm called
Lp-RLS, which converts Ω(x) into (x2 + e)

p
2 . In [15], when p → 0 and e → 0, the objective function

will approximate the form in Eq. (3). In [16], the authors proposed a smoothed function Fσ(x) to
replace Ω(x), because the smoothed function approximates the L0-norm. In addition to the algorithms
described above, in recent years, new CS algorithms such as EPRESS [17] and EWISTA [18] algorithms
have emerged in the MRI field, which greatly improves the reconstruction performance.

Based on the above-mentioned state-of-the-art algorithms, this paper proposes a new algorithm
called RRITSL0 algorithm. In this algorithm, we first propose an IT function approximating ||x||0.
Then a new iterative re-weighted function is proposed to promote signal sparsity. Finally, conjugate
gradient (CG) method is used to implement the optimization process. On this basis, the proposed
RRITSL0 algorithm is applied to MR image recovery.
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This paper is organized as follows. Section 2 introduces the theories of the proposed RRITSL0
algorithm. Then we verify the performance of the RRITSL0 algorithm through simulation experiments
and apply this algorithm to recover MR image in Section 3. Section 4 concludes this paper.

2. RELATE WORK

2.1. New Smoothed L0-Norm Function Model

Mohimani et al. [19] proposed that the problem of finding the sparsest vector in the set {x|y = Ax+b}
can be interpreted as the task of approximating the Kronecker delta function, which is described as

δ(xi) =
{

1, for xi =0
0, otherwise

, i = 1, 2, . . . , n (5)

Therefore, the L0-norm of x is equal to ||x||0 =
n∑

i=1
[1 − δ(xi)] and can be approximated by

n∑
i=1

f(xi) in

which f(xi) denotes a smoothed function that acts as a delta approximating (DA) function. Based on
this, we propose IT function

Fσ(x) =
n∑

i=1

fσ(xi),

fσ(xi) =
2
π

arctan
( |xi|

σ

) (6)

where σ is a smoothed factor, and xi is an independent variable. Obviously, lim
σ→0

fσ (xi) ={
0, for xi = 0
1, otherwise can be regarded as a DA function, so ||x||0 can be approximated as ||x||0 ≈ Fσ(x) =

lim
σ→0

n∑
i=1

fσ(xi). Similarly, there are other smoothed functions proposed, such as the Gaussian function

fσ(xi) = 1 − e−
x2

i
2σ2 in [19] and the hyperbolic tangent function (tanh) fσ(xi) = e

x2
i

2σ2 −e
− x2

i
2σ2

e

x2
i

2σ2 +e
− x2

i
2σ2

in [20]. We
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Figure 2. Different DA functions are plotted in this figure for comparison in 2D space when σ = 0.1.
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can know that the three smoothed functions are closer to the DA function with respect to smaller σ,
but the IT function can approximate the DA function more than the other two functions at the same
σ, as shown in Fig. 2.

Figure 2 shows that the situation of IT function clusters approximates the L0-norm. Obviously,
the IT function makes a better approximation than the Gaussian and tanh functions. In general, this
proposed smoothed function has two obvious merits:

1) Its clusters closely approximate L0-norm;
2) It is simpler than tanh function.
These two merits can reduce the computational complexity on the premise of ensuring the

reconstruction accuracy.

2.2. New Re-Weighted Function Design

Candès et al. [21] proposed the re-weighted L1-norm minimization method, which employs the re-
weighted norm to enhance the sparsity of the solution. And they provided an analytical result of the
improvement in the sparsity recovery by incorporate re-weighted function to the objective function. Pant
et al. [22] applied another re-weighted smoothed L0-norm minimization method, which used a similar
re-weighted function to improve sparsity. The re-weighted functions can be summarized as follows:

• Candès, et al.: wi =

⎧⎨⎩
1
|xi| , for xi �= 0

∞ for xi = 0
.

• Pant et al.: wi = 1
|xi|+ζ , ζ is a small enough positive constant.

From the two re-weighted functions, we can find a phenomenon: a large signal entry xi is re-
weighted with a small wi. On the contrary, a small signal entry xi is re-weighted with a large wi. By
analysis, the large wi forces the solution x to concentrate on the indices where wi is small, and by
construction these correspond precisely to the indices where x is nonzero.

Combined with the above idea, we propose a new re-weighted function, which is given by

wi =
1

e|xi| , i = 1, 2, . . . , n (7)

.
In Eq. (7), when xi → 0, wi → 1, and when xi → −∞ or xi → +∞, wi → 0. wi is an even function

that monotonically decreases on xi ∈ [0,∞], which shows that the re-weighted function has maximum
in location xi = 0 and minimum in location xi approximating negative infinity or positive infinity. By
computation, the range of wi in Eq. (7) is [0, 1], while the range of Candès et al. is [0,+∞], and that
of Pant et al. is [0, 1

ζ ]. As for Candès et al., when signal entry is zero or close to zero, the value of wi

will be very large, which is not suitable for computation by computer. Although Pant et al. noticed
the problem and improved the re-weighted function to avoid this problem, the constant ζ depends
on experience. Luckily, the proposed re-weighted function can avoid this problem. In conclusion, the
proposed re-weighted function has two merits:

1) It has a proper range that can give each signal component a proper re-weighted value, and when
the signal component is close to zero, the re-weighted value will not be large.

2) It need not adjust parameters like ζ, and the denominator does not equal zero.

2.3. The New Proposed RRITSL0 Algorithm and Its Steps

As explained above, the objective function can be described as

arg min
x∈Rn

1
2
||y − Ax||22 + λWFσ(x) (8)

where λ is a regularized factor that revises the original objective function. Re-weighted function
W = diag{w1, w2, . . . wn}, and wi is illustrated in Eq. (7) and can show the difference of each
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component of signal. The differentiable smoothed accumulated function Fσ(x) = lim
σ→0

n∑
i=1

fσ(xi) =

lim
σ→0

n∑
i=1

2
π arctan( |xi|

σ ) is used to approximate ||x||0.
Let

g = 	Fσ(x) =
n∑

i=1

∂fσ(xi)
∂xi

=
n∑

i=1

2
π

1( |xi|
σ

)2

+ 1

∂|xi|
∂xi

(9)

In fact, ∂|xi|
∂xi

does not exist, and the main reason is that |xi| cannot find the derivative at zero. In order

to solve the problem, we make ∂|xi|
∂xi

∣∣∣
xi=0

= 0. Hence, ∂|xi|
∂xi

can be represented as

∂|xi|
∂xi

=

{ 1,
0,

−1,

for xi > 0
for xi = 0
for xi < 0

}
= sign(xi) (10)

From Eq. (10), ∂|xi|
∂xi

= sign(xi), hence, g =
n∑

i=1
gi =

n∑
i=1

2
π

1

(
|xi|
σ

)2+1
sign(xi). Then the gradient for Eq. (8)

can be written as
G = AT (y − Ax) + λWg (11)

According to the objective function, the hessian of Eq. (8) can be readily expressed in closed form
as

H = ATA + λWU, (12)

where
U = diag{u1, u2, . . . , un}, (13)

ui =
∂gi

∂xi
=

4
π

xiσ
2

x2
i + σ2

sign(−xi), i = 1, 2, . . . , n (14)

In fact, the problem of solving the objective function in Eq. (8) is translated into an optimization
problem. This paper applies CG method to RRITSL0 algorithm to optimize the objective function.
The problem can be firstly solved by using a sequential σ − continuation strategy as detailed in the
next paragraph.

Given a small target value σT and a sufficiently large initial value of parameter σ, i.e., σ1,
monotonically decreasing sequence {σt : t = 1, 2, 3, . . . , T} is generated as

σt = σ1θ
−α(t−1), t = 1, 2, . . . , T (15)

where α = logθ(σ1/σT )
T−1 , and T is the maximum of iterations.

In the CG algorithm [23], iteratively, x(Γ ) (Γ denotes the number of inner loop iterations) is updated
as

x(Γ+1) = x(Γ ) + �(Γ )d(Γ ), (16)

where the parameter d(Γ ) can be given by

d(Γ ) = −G(Γ ) + η(Γ−1)d(Γ−1), (17)

the parameter η(Γ−1) is given as

ηΓ−1 =

n∑
i=1

(GΓ,i)2

n∑
i=1

(GΓ−1,i)2
, (18)
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and the parameter �(Γ ) is updated as

�(Γ ) =

n∑
i=1

(GΓ,i)2

dT
(Γ )H(Γ )d(Γ )

(19)

where G(Γ ) and H(Γ ) are the gradient and hessian of objective function in Eq. (8) evaluated at x = x(Γ )

using Eqs. (11) and (12), respectively. As shown in Eq. (19), �(Γ ) is positive if H(Γ ) is positive definite
(PD). And we can see from Eq. (12) that ATA is PD, and W is PD, so H(Γ ) is PD if U(Γ ) is PD. To
get the PD of U(Γ ), we can make the following processing:

ui =
{

ui, for ui > ξ

ξ for ui � ξ
(20)

where ξ is a small positive constant (about 10−5). The denominator in Eq. (19) can be evaluated
efficiently as

dT
(Γ )H(Γ )d(Γ ) = ||Ad(Γ )||22 + λ||E(Γ )||22, (21)

E(Γ ) = Q(Γ )d(Γ ) (22)

where Q(Γ ) = [qΓ,1, qΓ,2, . . . , qΓ,n]T with qΓ,i = √
wΓ,iui, wΓ,i is the component of wi evaluated at

x = x(Γ ) using Eq. (7), thereby �Γ can be expressed as

�(Γ ) =

n∑
i=1

(GΓ,i)2

||Ad(Γ )||22 + λ||E(Γ )||22
(23)

Based on the above explanation, we can conclude the steps of the proposed RRITSL0 algorithm,
which is given in Table 1. As shown in Table 1, λ = 0.1λmax and λmax = 2||AT y||∞ are the same as
the value in [24]. As for σ, it can be shown that function Fσ(x) remains convex in the region where
the largest magnitude of the component of x is less than σ. Based on this, a reasonable initial value of
σ can be chosen as σ1 = max(|xi|) + τ (τ is defaulted as 0.01) to ensure the optimization starts in a
convex region. This greatly facilitates the convergence of the RRITSL0 algorithm.

Table 1. Regularized re-weighted inverse trigonometric smoothed function approximating L0-norm
minimization (RRITSL0) algorithm.

Initialization: A, x, y, ξ, η, τ, σT , T, λ and x∗ = x
Step1: Set σ1 = max(|xi|) + τ, t = 0;
Step2: Compute W using Eq. (7);
Step3:

For t = 1, 2, 3, . . . , T

compute σt using Eq. (15);
1) Set σ = σt, Γ = 0, x(Γ ) = x∗

2) Compute Residual Res = ||�(Γ )d(Γ )||22, and iterative termination threshold err

3) While Res > err

a) Compute x(Γ+1) using Eqs. (16)-(23), W using Eq. (7)
b) Set Γ = Γ + 1
c) Compute Res = ||�(Γ )d(Γ )||22

4) Set x∗ = x(Γ )

Step4: Output x = x∗
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3. NUMERICAL SIMULATION AND ANALYSIS

In this section, we will verify the performance of the RRITSL0 algorithm in the case of noise and apply
the algorithm to MR image recovery. The numerical simulation platform is MATLAB 2017b, which is
installed on the WINDOWS 10, 64-bit operating system. The CPU is Inter (R) Core (TM) i5-3230M,
and the frequency is 2.6 GHz.

First, we analyze the performance of the proposed RRITSL0 algorithm in sparse signal recovery
and compare it with SL0, L2-SL0 [25] and Lp-RLS [15] algorithms. We fix n = 256 and m = 100 and
the sparsity k = 4s + 1, s = 1, 2, . . . , 15, or let n = [170, 220, 270, 320, 370, 420, 470, 520], m = n/2,
k = n/5. For every experiment, we randomly generate a pair of {x,A,b}: A is an m × n random
Gaussian matrix with normalized and centralized rows; the nonzero entries of the sparse signal x ∈ R

n

are i.i.d. generated according to the Gaussian distribution N (0, 1); b is randomly formed and follows
the Gaussian distribution of N (0, δN ).

Given the measurement vector y = Ax + b, sensing matrix A and noise b, we try to recover the
signal x. Choose the parameters that give the best performance for each method: for the SL0 algorithm,
σmin = 10−2, scale factor is set as S = 10, ρ = 0.8; for L2-SL0 algorithm, σmin = 0.01, S = 10, ρ = 0.8;
for Lp-RLS algorithm, p1 = 1, pT = 0.1, ε1 = 1, εT = 10−2; and for RRITSL0 algorithm, σT = 10−2,
err = 10−8. All experiments are based on 100 trials.
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Figure 3. Signal SNR analysis for the SL0,
L2-SL0, Lp-RLS algorithms and the proposed
RRITSL0 algorithm with noise power factor δN

equaling [0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07,
0.08, 0.09, 0.1] while 100 runs.
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Figure 4. Signal SNR analysis for the SL0,
L2-SL0, Lp-RLS algorithms and the proposed
RRITSL0 algorithm with noise power factor δN =
0.05 and the sparsity k = 4s + 1, s = 1, 2, . . . , 15
while 100 runs.

Next, we analyze the convergence of proposed algorithm by experiments.
At last, we apply the proposed algorithm to recover MR image. For MR image recovery, we conclude

the recovery performance when the Compression Ratio (CR) is certain or changed. CR is defined as
m/n.

3.1. The Recovery Performance Comparison of the Algorithms

In this section, we evaluate the recovery performance of the RRITSL0 algorithm to recover the noisy
signal by Signal to Noise Ratio (SNR), Normalized Mean Square Error (NMSE) and CPU Running
Time (CRT). SNR and NMSE are two aspects of signal reconstruction performance and have the same
effect. They are respectively defined as 20 log(||x − x̂||2/||x||2) and ||x − x̂||2/||x||2. CRT is measured
with tic and toc.
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Figure 5. Signal NMSE analysis for the SL0,
L2-SL0, Lp-RLS algorithms and the proposed
RRITSL0 algorithm with noise power factor δN =
0.05 and the sparsity k = 4s + 1, s = 1, 2, . . . , 15
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Figure 6. Signal CRT analysis for the SL0,
L2-SL0, Lp-RLS algorithms and the proposed
RRITSL0 algorithm while 100 runs with δN =
0.05.

SNR of recovered signal is shown in Fig. 3 when n = 256, m = 100, k = 20. The SNR of all
algorithms decreases sharply with increase of δN , which shows that the noise can seriously affect the
performance of algorithms. Despite this, the RRITSL0 gets the largest SNR, followed by three other
algorithms with similar SNR, which proves that the de-noise performance of the RRITSL0 is better
than the other three algorithms.

Figures 4 and 5 show the SNR and NMSE of all chosen algorithms with noise power factor δN

equaling 0.05 and the sparsity k = 4s+1, s = 1, 2, . . . , 15. From the two figures, the proposed RRITSL0
outperforms other chosen algorithms.

The CRT is shown in Fig. 6 when n = [170, 220, 270, 320, 370, 420, 470, 520], m = n/2, k = n/5.
The figure shows that in terms of CRT performance, although the RRITSL0 is superior to the Lp-RLS,
it is inferior to the SL0 and L2-SL0. Therefore, improving the reconstruction speed is one of the main
directions of the RRITSL0 algorithm in the future.

3.2. The Convergence Performance Comparison of the Algorithms

To illustrate the convergence of the proposed RRITSL0 algorithm, we present the performance of NMSE
with the iterations in Figs. 7 and 8. For this section, the signal is set as random signal x ∈ R

n and
measurement vector y ∈ R

m with n = 256, m = 100, k = 20.
Figure 7 shows the NMSE of the SL0, L2-SL0, Lp-RLS and RRITSL0 algorithms with iterations.

It can be seen that these algorithms eventually converge to a very small value, but obviously, RRITSL0
with re-weighted function has the fastest convergence rate. In addition, the NMSE of the RRITSL0
algorithm is always minimal at any time. This fully proves that the proposed RRITSL0 can promote
the sparsity of the signal and thus improve the convergence speed.

Figure 8 shows the NMSE of the proposed RRITSL0 algorithm at different k with iterations. As k
increases, the convergence speed of the RRITSL0 gradually decreases. But when k is less than 25, the
RRITSL0 has a faster convergence speed. This shows that the RRITSL0 has good convergence when k
is not large.

Through the above simulation experiments, we prove that the RRITSL0 algorithm can accurately
reconstruct the sparse signal under noise conditions and has good convergence performance, which
provides a basis for the application of the RRITSL0 algorithm in MR image processing.
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Figure 7. NMSE of recovery signal changes
with iterations, the figure shows the comparison
between the SL0, L2-SL0, Lp-RLS algorithms and
the proposed RRITSL0 algorithm.
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3.3. MR Image Recovery Performance Comparison of the Algorithms

Real images are considered approximately sparse under some proper basis, such as the DCT basis and
DWT basis. Here we choose DWT basis as sparse basis of brain MR image. The size of this MR
image is 256 × 256. First, we verify the recovery performance of the proposed RRITSL0 algorithm
by comparing it with the SL0, L2-SL0 and Lp-RLS algorithms. The noise δN equals 0.01, and CR is
0.4, 0.5, 0.6. Then, we fix CR to 0.5 and compare the MR image recovery effects of the RRITSL0 at
δN = [0, 0.05, 0.1, 0.2, 0.5]. For performance of MR image recovery, we valuate it by Peak Signal to
Noise Ratio (PSNR) and Structural Similarity index (SSIM). PSNR is defined as

PSNR = 10 log(2552/MSE) (24)
where MSE = ||x − x̂||22, and SSIM is defined as

SSIM(p, q) =
(2μp + μq + c1)(2σpq + c2)

(μ2
p + μ2

q + c1)(σ2
p + σ2

q + c2)
(25)

Among this, μp is the mean of MR image p, μq the mean of image q, σps the variance of MR
image p, σq the variance of MR image q, and σpq the covariance between MR image p and MR image q.
Parameters c1 = z1L and c2 = z2L, in which z1 = 0.01, z2 = 0.03, and L is the dynamic range of pixel
values. The range of SSIM is [−1, 1], and when these two images are same, the SSIM equals 1.

Figure 9. Original MR image.
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Figure 10. MR Image recovery effect by the SL0, L2-SL0, Lp-RLS and the proposed RRITSL0
algorithms with CR = 0.4. From left to right in the figure are: recovered MR image by the SL0,
recovered MR image by the L2-SL0, recovered MR image by the Lp-RLS and recovered MR image by
the proposed RRITSL0.

Figure 11. MR Image recovery effect by the SL0, L2-SL0, Lp-RLS and the proposed RRITSL0
algorithms with CR = 0.5. From left to right in the figure are: recovered MR image by the SL0,
recovered MR image by the L2-SL0, recovered MR image by the Lp-RLS and recovered MR image by
the proposed RRITSL0.

Figure 9 shows an original MR image. Figs. 10–12 show the situation about MR image recovery
when CR is respectively 0.4, 0.5, 0.6. Table 2 shows the PSNR and SSIM of Figs. 10–12. As shown in
Figs. 10–12, all algorithms can clearly recover MR image when CR is over 0.5. Furthermore, we can see
the difference of each algorithm in detail by scientific data in Table 2. From the table, the RRITSL0
has better PSNR and SSIM than other three selected algorithms, which verifies the good MR image
recovery performance of the proposed RRITSL0. So, the proposed RRITSL0 can be used for MR image
recovery.

Figure 13 shows de-noise performance of the proposed RRITSL0 algorithm when recovering sparse
images. When δN is less than 0.2, the difference in MR image recovery is not obvious. But when δN

Table 2. PSNR and SSIM of recovery MR image by the SL0, L2-SL0 and Lp-RLS algorithms and the
proposed RRITSL0 algorithm.

CR PSNR (dB) SSIM (%)
SL0 L2-SL0 Lp-RLS RRITSL0 SL0 L2-SL0 Lp-RLS RRITSL0

0.4 29.065 30.206 37.368 39.237 97.46 98.06 99.63 99.78
0.5 31.967 32.710 38.965 40.183 98.72 98.92 99.74 99.79
0.6 34.875 35.282 40.243 41.031 99.35 99.41 99.81 99.86
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Figure 12. MR Image recovery effect by the SL0, L2-SL0, Lp-RLS and the proposed RRITSL0
algorithms with CR = 0.6. From left to right in the figure are: recovered MR image by the SL0,
recovered MR image by the L2-SL0, recovered MR image by the Lp-RLS and recovered MR image by
the proposed RRITSL0.

Figure 13. MR image recovery effect by the proposed RRITSL0 algorithm when noise is incrementing
according to a sequence δN = [0, 0.05, 0.1, 0.2, 0.5]. And the above three sub-figures in this figure are
from left to right: original MR image, recovered MR image with δN = 0, 0.05. And the following three
sub-figures in this figure are from left to right: recovered MR image with δN = 0.1, 0.2, 0.5.

Table 3. PSNR and SSIM of recovered MR image by the the proposed RRITSL0 algorithm with
δN = [0, 0.05, 0.1, 0.2, 0.5].

δN PSNR (dB) SSIM (%)

0 47.150 99.92
0.05 30.148 98.31
0.10 24.282 92.79
0.20 18.375 76.88
0.50 12.518 35.52
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is over 0.2, the effect of MR image recovery is significantly reduced. These show that the proposed
RRITSL0 has a certain ability to de-noise, but under high noise conditions, the effect needs to be
improved. Table 3 gives the scientific data. From the table, we can see that as δN gradually increases
from 0 to 0.5, both PSNR and SSIM decrease.

Through experiments, we can know that the proposed RRITSL0 algorithm can obtain better results
in sparse image recovery. This is mainly because the IT function cluster used by it can approximate
the L0-norm well; the re-weighted function can promote the sparsity; the regularization mechanism has
the ability to resist noise.

4. CONCLUSIONS

This paper proposes an RRITSL0 algorithm for reconstructing sparse signals and images. The RRITSL0
is based on the IT function as a DA function, and its cluster can better approximate the L0-norm. Then,
we use re-weighted function to promote sparsity and apply the CG algorithm to optimize. Furthermore,
experiments show that: (1) the RRITSL0 algorithm can improve accuracy and has certain de-noise
performance; (2) RRITSL0 has a faster convergence speed; (3) the RRITSL0 satisfies the needs of
sparse signals and MR image recovery, and improves chance of CS applied to other fields. In our future
research, the RRITSL0 algorithm will be optimized for operating rates and high de-noise performance.
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