Vol. 88
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-11-01
Radio Propagation Measurement and Characterization in Outdoor Tall Food Grass Agriculture Field for Wireless Sensor Network at 2.4 GHz Band
By
Progress In Electromagnetics Research C, Vol. 88, 43-58, 2018
Abstract
This paper describes the radio propagation measurement campaign in the sugarcane field representing a tall food grass characteristic which is one of the common types in outdoor agriculture environments. The measurement was conducted by using a channel sounder having a bandwidth of 45.6 MHz at 2.45 GHz with the aim at investigating the propagation channel characteristics which are useful in deploying of wireless sensor networks in the precision agriculture. By analogy to Ikegami model, the variation of path loss over the relative angles between the plant rows and the line-of-sight direction from the transmitter to the receiver is identified. Utilizing this knowledge, this work justifies the procedure of predicting the path loss at any point in the field by a few measurement efforts. Furthermore, the Rician K-factor and RMS delay spread are investigated in the vegetation depth shorter than 40 m. The result shows that the relationship between the Rician K-factor and its corresponding path loss value in each measurement point can be fitted with the log-linear line. This leads to the possibility of predicting K-factor at any points in the field. In addition, since the result of RMS delay spread is independent to the vegetation depth and the density of the plant, it is represented by the statistical model in which the Weibull distribution provides the best representation.
Citation
Tossaporn Srisooksai, Kamol Kaemarungsi, Junichi Takada, and Kentaro Saito, "Radio Propagation Measurement and Characterization in Outdoor Tall Food Grass Agriculture Field for Wireless Sensor Network at 2.4 GHz Band," Progress In Electromagnetics Research C, Vol. 88, 43-58, 2018.
doi:10.2528/PIERC18062903
References

1. Bongiovanni, R. and J. Lowenberg-Deboer, "Precision agriculture and sustainability," Precision Agriculture, Vol. 5, No. 4, 359-387, Aug. 2004.
doi:10.1023/B:PRAG.0000040806.39604.aa

2. Ndzi, D. L., A. Harun, F. M. Ramli, M. L. Kamarudin, A. Zakaria, A. Y. M. Shakaff, M. N. Jaafar, S. Zhou, and R. S. Farook, "Wireless sensor network coverage measurement and planning in mixed crop farming," Computers and Electronics in Agriculture, Vol. 105, 83-94, 2014.
doi:10.1016/j.compag.2014.04.012

3. Srisooksai, T., K. Keamarungsi, P. Lamsrichan, and K. Araki, "Practical data compression in wireless sensor networks: A survey," Journal of Network and Computer Applications, Vol. 35, No. 1, 37-59, Jan. 2012.
doi:10.1016/j.jnca.2011.03.001

4. Castiglione, P., S. Savazzi, M. Nicoli, and T. Zemen, "Partner selection in indoor-to-outdoor cooperative networks: An experimental study," IEEE Journal on Selected Areas in Communications, Vol. 31, No. 8, 1559-1571, Aug. 2013.
doi:10.1109/JSAC.2013.130818

5. Savage, N., D. Ndzi, A. Seville, E. Vilar, and J. Austin, "Radio wave propagation through vegetation: Factors influencing signal attenuation," Radio Science, Vol. 38, No. 5, n/a-n/a, Oct. 2003.

6. Joshi, G. G., C. B. Dietrich, C. R. Anderson, W. G. Newhall, W. A. Davis, J. Isaacs, and G. Barnett, "Near-ground channel measurements over line-of-sight and forested paths," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 152, No. 6, 589-596, Dec. 2005.
doi:10.1049/ip-map:20050013

7. Gay-Fernandez, J. A., M. Garcia S´annchez, I. Cuinas, A. V. Alejos, J. G. Sanchez, and J. L. Miranda-Sierra, "Propagation analysis and deployment of a wireless sensor network in a forest," Progress In Electromagnetics Research, Vol. 106, 121-145, 2010.
doi:10.2528/PIER10040806

8. Gay-Fernandez, J. A. and I. Cuinas, "Peer to peer wireless propagation measurements and path-loss modeling in vegetated environments," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 6, 3302-3311, Jun. 2013.
doi:10.1109/TAP.2013.2254452

9. Oestges, C., B. M. Villacieros, and D. Vanhoenacker-Janvier, "Radio channel characterization for moderate antenna heights in forest areas," IEEE Transactions on Vehicular Technology, Vol. 58, No. 8, 4031-4035, Oct. 2009.
doi:10.1109/TVT.2009.2024947

10. Gay-Fernandez, J. A. and I. Cuinas, "Short-term modeling in vegetation media at wireless network frequency bands," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6, 3330-3337, Jun. 2014.
doi:10.1109/TAP.2014.2314459

11. ITU-R P.833-9 "Attenuation in vegetation,", Sep. 2016.

12. Anderson, C. R., H. I. Volos, and R. M. Buehrer, "Characterization of low-antenna ultrawideband propagation in a forest environment," IEEE Transactions on Vehicular Technology, Vol. 62, No. 7, 2878-2895, Sep. 2013.
doi:10.1109/TVT.2013.2251027

13. Grivet, L. and P. Arruda, "Sugarcane genomics: Depicting the complex genome of an important tropical crop," Current Opinion in Plant Biology, Vol. 5, No. 2, 122-127, 2002.
doi:10.1016/S1369-5266(02)00234-0

14. Balachander, D., T. R. Rao, and G. Mahesh, "RF propagation experiments in agricultural fields and gardens for wireless sensor communications," Progress In Electromagnetics Research C, Vol. 39, 103-118, 2013.
doi:10.2528/PIERC13030710

15. Ndzi, D. L., L. M. Kamarudin, A. A. Muhammad Ezanuddin, A. Zakaria, R. B. Ahmad, M. F. B. A. Malek, A. Y. M. Shakaff, and M. Jafaar, "Vegetation attenuation measurements Vegetation attenuation measurements," Progress In Electromagnetics Research B, Vol. 36, 283-301, 2012.
doi:10.2528/PIERB11091908

16. Hara, M., H. Shimasaki, Y. Kado, and M. Ichida, "Effect of vegetation growth on radio wave propagation in 920-MHz band," IEICE Transactions on Communications, Vol. 99, No. 1, 81-86, 2016.
doi:10.1587/transcom.2015ISP0021

17. Amaral, L. R., R. G. Trevisan, and J. P. Molin, "Canopy sensor placement for variable-rate nitrogen application in sugarcane fields," Precision Agriculture, Vol. 19, No. 1, 147-160, Feb. 2018.
doi:10.1007/s11119-017-9505-x

18. Garcia-Sanchez, A.-J., F. Garcia-Sanchez, and J. Garcia-Haro, "Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops," Computers and Electronics in Agriculture, Vol. 75, No. 2, 288-303, 2011.
doi:10.1016/j.compag.2010.12.005

19. Payne, A. B., K. B. Walsh, P. P. Subedi, and D. Jarvis, "Estimation of mango crop yield using image analysis --- Segmentation method," Computers and Electronics in Agriculture, Vol. 91, 57-64, 2013.
doi:10.1016/j.compag.2012.11.009

20. Cubero, S., W. S. Lee, N. Aleixos, F. Albert, and J. Blasco, "Automated systems based on machine vision for inspecting citrus fruits from the field to postharvest --- A review," Food and Bioprocess Technology, Vol. 9, No. 10, 1023-1639, 2016.
doi:10.1007/s11947-016-1767-1

21. IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011) "IEEE standard for low-rate wireless networks,", IEEE 2006, Apr. 2016.

22. Meng, Y. S. and Y. H. Lee, "Investigations of foliage effect on modern wireless communication systems: A review," Progress In Electromagnetics Research, Vol. 105, 313-332, 2010.
doi:10.2528/PIER10042605

23. Johnson, R. and F. Schwering, "A transport theory of millimeter wave propagation in woods and forests,", US Army, Comumunications-Electronics Command, Fort Monmouth, New Jersey, Tech. Rep. CECOM-TR-85-1, 1985.

24. COST 235 Management Committee, COST 235 Radiowave Propagation Effects on Nextgeneration Fixed-Services Terrestrial Telecommunications Systems, , 1996.

25. Seville, A. and K. H. Craig, "Semi-empirical model for millimetre-wave vegetation attenuation rates," Electronics Letters, Vol. 31, No. 17, 1507-1508, Aug. 1995.
doi:10.1049/el:19951000

26. Al-Nuaimi, M. and A. Hammoudeh, "Measurements and predictions of attenuation and scatter of microwave signals by trees," IEE Proceedings-Microwaves, Antennas and Propagation, Vol. 141, No. 2, 70-76, 1994.
doi:10.1049/ip-map:19949840

27. Meng, Y. S., Y. H. Lee, and B. C. Ng, "Empirical near ground path loss modeling in a forest at VHF and UHF bands," and UHF bands, Vol. 57, No. 5, 1461-1468, May 2009.

28. Kattenbach, R., "Statistical modeling of small-scale fading in directional radio channels," IEEE Journal on Selected Areas in Communications, Vol. 20, No. 3, 584-592, Apr. 2002.
doi:10.1109/49.995517

29. ITU-R P.1407-5 "Multipath propagation and parametrization of its characteristics,", Sep. 2013.

30. 30, T., J. Takada, and K. Saito, "Portable wide-band channel sounder based software defined radio for studying the radio propagation in an outdoor environment," 2017 International Symposium on Antennas and Propagation (ISAP), 1-2, Oct. 2017.

31. Kaemarungsi, K., "Development and deployment of ZigBee wireless sensor networks for precision agriculture in sugarcane field," Asia-Pacific Advanced Network (APAN) 33rd, Feb. 2012.

32. Kim, M., Y. Konishi, Y. Chang, and J. Takada, "Large scale parameters and double-directional characterization of indoor wideband radio multipath channels at 11 GHz," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 1, 430-441, Jan. 2014.
doi:10.1109/TAP.2013.2288633

33. Al-Nuaimi, M. O. and A. G. Siamarou, "Coherence bandwidth characterisation and estimation for indoor Rician multipath wireless channels using measurements at 62.4GHz," Antennas and Propagation IEE Proceedings --- Microwaves, Vol. 149, No. 3, 181-187, Jun. 2002.
doi:10.1049/ip-map:20020391

34. Varela, M. S. and M. G. Sanchez, "RMS delay and coherence bandwidth measurements in indoor radio channels in the UHF band," IEEE Transactions on Vehicular Technology, Vol. 50, No. 2, 515-525, Mar. 2001.
doi:10.1109/25.923063

35. Fleury, B. H., "An uncertainty relation for WSS processes and its application to WSSUS systems," IEEE Transactions on Communications, Vol. 44, No. 12, 1632-1634, Dec. 1996.
doi:10.1109/26.545890

36. Oestges, C., N. Czink, B. Bandemer, P. Castiglione, F. Kaltenberger, and A. J. Paulraj, "Experimental characterization and modeling of outdoor-to-indoor and indoor-to-indoor distributed channels," IEEE Transactions on Vehicular Technology, Vol. 59, No. 5, 2253-2265, Jun. 2010.
doi:10.1109/TVT.2010.2042475

37. Molisch, A. F., Wireless Communications, 2nd Ed., John Wiley & Sons, 2011.

38. Akaike, H., "Information theory and an extension of the maximum likelihood principle," Selected Papers of Hirotugu Akaike, E. Parzen, K. Tanabe, and G. Kitagawa (eds.), 199-213, Springer, New York, NY, New York, 1998.

39. Burnham, K. P., D. R. Anderson, and K. P. Burnham, Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd Ed., Springer, New York, 2002.

40. Sugiura, N., "Further analysts of the data by akaike’s information criterion and the finite corrections: Further analysts of the data by akaike’s," Communications in Statistics --- Theory and Methods, Vol. 7, No. 1, 13-26, Jan. 1978.
doi:10.1080/03610927808827599

41. Takada, J., J. Fu, H. Zhu, and T. Kobayashi, "Spatio-temporal channel characterization in a suburban non line-of-sight microcellular environment," IEEE Journal on Selected Areas in Communications, Vol. 20, No. 3, 532-538, Apr. 2002.
doi:10.1109/49.995512

42. Walpole, R. E., Ed., Essentials of Probability and Statistics for Engineers and Scientists, Pearson, Boston, Mass., 2013.