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Radio Propagation Measurement and Characterization in Outdoor

Tall Food Grass Agriculture Field for Wireless Sensor
Network at 2.4 GHz Band

Tossaporn Srisooksai1, *, Kamol Kaemarungsi2, Junichi Takada3, and Kentaro Saito3

Abstract—This paper describes the radio propagation measurement campaign in a sugarcane field
representing a tall food grass characteristic which is one of the common types of outdoor agriculture
environments. The measurement was conducted by using a channel sounder having a bandwidth of
45.6 MHz at 2.45 GHz with the aim of investigating the propagation channel characteristics which are
useful in deploying wireless sensor networks in precision agriculture. By analogy with the Ikegami
model, the variation of the path loss over the relative angles between the plant rows and the line-of-
sight direction from the transmitter to the receiver is identified. Utilizing this knowledge, this work
justifies the procedure of predicting the path loss at any point in the field by a few measurement efforts.
Furthermore, the Rician K-factor and root-mean-square delay spread are investigated for vegetation
depths less than 40 m. The result shows that the relationship between the Rician K-factor and its
corresponding path loss value in each measurement point can be fitted with the log-linear line. This
leads to the possibility of predicting the K-factor at any point in the field. In addition, because the
result of the root-mean-square delay spread is independent of the vegetation depth and the density of
the plant, it is represented by the statistical model in which the Weibull distribution provides the best
representation.

1. INTRODUCTION

Precision agriculture is the management of the spatial and temporal variability of agriculture fields
using information, communication, and technology [1]. Wireless sensor network (WSN), which is a
combination of sensor nodes and a wireless network, plays a significant role in gathering such variability
in the fields so that precision management can be applied to obtain the maximum yield. For the
gathering application, numerous sensor nodes are scattered around a wide geographical area in which
two significant requirements are crucial: the reliability of wireless communication in terms of network
coverage [2] and low energy consumption for maximizing the wireless network’s lifetime [3]. In [2, 4],
the authors showed that knowledge of radio propagation channel parameters such as path loss and
small-scale fading helps achieve these requirements.

Several existing works [5–11] have investigated radio propagation in the forest. The path loss was
modeled empirically in [7, 8]. More microscopic radio propagation characteristics such as the shadowing
loss [9] and small-scale fading [5, 6, 9, 10] for narrow-band channels as well as the characteristics of
ultra-wideband (UWB) channels [12] were modeled empirically.

Such empirical models in the forest environment give many useful insights for radio propagation in
agriculture fields, and some parameters of the propagation channel might be applicable to fruit orchards
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because they are also dominated by trees with a single trunk. However, it might be problematic for the
case of tall food grass — the Poaceae family in botanical terminology [13] such as corn and sugarcane —
as well as the case of herb fields. Recently, the authors of [14] empirically fitted the measurement results
from a corn field at 2.4 GHz by using the model’s parameters recommended for the forest case. The
underprediction result of the path loss is shown, especially during the crop maturity stage.

Recently, measurements in various types of outdoor agriculture fields for various frequencies and
different antenna heights were conducted [2, 14–16]. In [2], the path loss results using antenna heights
of 0.15 m and 1 m were compared in the cashew orchard, corn field, and herb field at 2.4 GHz band.
Although the measurements using an antenna height at 0.15 m showed greater path loss in all the fields,
the path loss difference between the two antenna cases is dependent on the relative of the antenna height
and the plant height. In the cashew orchard and corn field where the plant height is higher than 1 m,
the difference is small, ≈ 3–7 dB at 10 m of vegetation depth. In the herb case, where the plant height is
higher than 0.15 m but lower than 1m, the difference is significantly large, ≈ 20 dB at 10 m of vegetation
depth. In [14, 16], the effect of the plant height on the path loss was investigated. The antenna height
was fixed, and the path loss at every 0.15 m change in mulberry tree height was investigated in 920 MHz
band in [16]. In tall food grass type, the path loss of two different corn heights was studied in 2.4 GHz
band in [14]. Both works pointed out that the path loss is dependent on the plant height, the loss
being greater when the plants are taller. The effect of antenna polarization was studied in the mulberry
orchard in [16], which pointed out that the horizontal polarization was less affected by the plants than
the vertical polarization.

Because the trees in forests are randomly distributed while the plants in agriculture fields are
regularly planted in rows/ridges, another environmental factor causing a significant path loss difference
in agriculture fields is the relative angle between the plant rows and the line-of-sight (LOS) direction
from the transmitting antenna (Tx) to the receiving antenna (Rx). In [15], two cases of this factor were
investigated in mango and oil palm orchards: the LOS direction was between two rows of trees (0◦) and
the plant rows coinciding with the LOS direction (90◦). In the tall food grass type, only the plant rows
coinciding with the LOS direction (90◦) were studied in [2, 14].

In addition to the path loss, small-scale fading for the agriculture case has not been reported yet in
existing works. Although investigations of the small-scale fading in forest scenarios were well represented
by the Rician K-factor [6, 9], the distance of radio communication used in those measurements was
longer than 40 m which is not a suitable range for precision agriculture [17]. Furthermore, because low
data rate transmission uses narrow bandwidth of the WSN, wideband propagation channel parameters
are not necessary, and they have not been studied by the existing works. However, recently several
proposals have emerged which apply multimedia sensor networks and computer vision techniques to
analyze the plant and field conditions in agriculture [18–20]. More bandwidth for data transmission will
be ultimately needed for implementing such techniques in the future.

In comparison with the existing studies mentioned above, the original contribution of this paper can
be summarized as follows. First, the influence of the tall food grass crop, which is one of the common
types of outdoor agriculture environments, on the radio channel propagation characteristics is clarified
through measurements in a sugarcane field. The results in the 2.4 GHz band are reported in this work
because it has a higher theoretical propagation loss, and thus it is more difficult to manage the radio
coverage than in other lower frequency bands applied in the WSN such as 868 and 920 MHz, although it
is able to provide higher data transmission [21]. Second, the effect of the relative angle between the plant
rows and the LOS direction from the Tx to Rx on the path loss has been comprehensively investigated.
The results reveal that the number of ridges existing between the LOS of the Tx and Rx is the dominant
cause of the angular variation. Therefore, the vegetation obstruction (VO) model is proposed to better
represent the angular variation. Utilizing the proposed model, the procedure of predicting the path loss
at any point in the sugarcane field by using a few measurement results can be formulated. Although
further experimental validation is needed, the same procedure is expected to be applicable to other
food grass agriculture fields under the conditions described in this work. This procedure can reduce
much of the effort in practical WSN planning and deployment. Third, the small-scale fading in terms
of the Rician K-factor is investigated for a range of vegetation depth that is more suitable for precision
agriculture than the existing works. It reveals the possibility of predicting the Ricain K-factor at any
point in the field if the path loss information is available. Finally, due to lack of wideband channel
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parameters in the tall food grass scenario, the root-mean-square (RMS) delay spread is investigated in
this work. This information will be useful for designing the high data rate communication which might
be needed in future systems.

The rest of this paper is organized as follows. The existing channel modeling approaches in
vegetation environment are reviewed in Section 2. The measurement campaign is described in Section 3.
The data processing of estimating the channel parameters is given in Section 4. The difference between
the modeling approaches used in this work and the existing works is highlighted in Section 5. In
Section 6, the angular variation of the path loss and the prediction of the path loss at any point in
the field are discussed. The Rician K-factor and RMS delay spread parameters are characterized in
Section 7 and Section 8, respectively. Finally, the conclusions are given in Section 9.

2. EXISTING MODELING APPROACHES

2.1. Path Loss Modeling

In the existing works for both forest and agriculture environments, the path loss LL(dt) is typically
modeled [9, 11, 16] as

LL(dt) = LF(dt) + LE(d), dB (1)

where df is the distance from the Tx located outside the vegetation area to the interface of the vegetation
area, dt the distance between the Tx and Rx, and d = dt − df the vegetation depth as illustrated in
Fig. 1. LE is the vegetation attenuation model of the excess loss E, which is generally defined as the
path loss value L that exceeds the free space path loss LF as

E(d) = L(dt) − LF (dt). dB (2)

For clarity, it is emphasized that the path loss value L and excess loss value E are obtained from
the measurement, whereas LL and LE are used to represent the models of L and E, respectively.
Comprehensive details of such vegetation attenuation models, which are classified into analytical and
empirical models, are presented in [22]. A brief summary is given here for completeness.

Figure 1. Definition of the vegetation depth (d).

2.1.1. Analytical Model

The analytical model based on the theory of radiative energy transfer (RET) is derived in [23]. In
this model, LE is the result of the interplay between the coherent and incoherent components of the
electromagnetic field in a random medium of vegetation scatterers. The coherent component is the
average field which has a well-defined direction and polarization of propagation. This part decreases
due to both absorption and scattering with high attenuation rates and dominates at short distances
from the electromagnetic source. The incoherent component is the zero-mean field and is generated
by the scattering of the coherent component. Thus, it consists of many waves propagating in various
directions. This part dominates at large distances from the source, resulting in a reduced attenuation
rate. Therefore, this model exhibits two slopes (gradients) of the ratio between the excess loss E and
vegetation depth d: the large gradient at shorter d and the small gradient at large d.
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2.1.2. Empirical Model

The widely accepted empirical generic models for the excess loss E are the modified exponential decay
(MED) model and the modified gradient model. Although the equation forms of the models are different,
their common feature is that they can be used to represent two gradients of the attenuation rate
described previously.

The MED model which is sometime known as COST 235 model [24] is expressed as

LEmed(d) = UfV dW dB (3)

where f is the frequency, and U , V , and W are the fitting parameters.
As mentioned in [25], the modified gradient model was intentionally proposed to represent two

gradients of the attenuation rate observed through the measurements in which the initial gradient of
the attenuation increases rapidly over shorter vegetation depths d, after which the final gradient of the
attenuation is considerably slower at large d. Such behavior is in agreement with the analytical-model-
based RET described previously. There are two models in this group: the maximum attenuation (MA)
model and the non-zero gradient (NZG) model [25] described as Eqs. (4) and (5), respectively:

LEma(d) = Am

{
1 − exp

(
− R0

Am
d

) }
, dB (4)

LEnzg(d) = R∞d + M

{
1 − exp

(
−R0 − R∞

M
d

) }
. dB (5)

In these models, R0 (dB/m) and R∞ (dB/m) represent the initial and final gradients of the attenuation
rate of E, respectively. Originally, Am (dB) in Eq. (4) and M (dB) in Eq. (5) represent the maximum
and the offset of E, respectively. However, when R∞ in Eq. (5) approaches zero, M in Eq. (5) ≈ Am

in Eq. (4), and thus the NZG model becomes the MA model. This MA form has been recently used to
represent the ITU-R model for the terrestrial path with one terminal in forest/woodland [11].

2.2. Model Selection

In the existing works [2, 14–16, 26, 27], the common way of determining the best LE model for the
samples of the excess loss E is to use the least squares model fitting in which the model giving the
lowest root-mean-square error (RMSE) is selected. However, the drawback is that the fitting error is
easily reduced by increasing the number of model parameters m.

2.3. Small-Scale Fading Modeling

Modeling small-scale fading is to explain the superposition (or unresolved components) of the
multipath components with the statistical distribution function [28]. In the forest scenario, where
the measurements were conducted at d > 40 m [6, 9], such fading is found to be well modeled by the
K-factor of the Nakagami-Rice distribution. Furthermore, the linear relationship between the Rician
K-factor and d was reported in [6] and the linear relationship between the Rician K-factor and log10(d)
known as the log-linear model was reported in [9].

2.4. Wideband Characteristic Modeling

The RMS delay spread, τrms, is an essential parameter that needs to be characterized in designing a
wideband communication system and represents the delay dispersion of the channel [29]. In the existing
work on the UWB measurement in the forest environment [12], in the case of d > 40 m, τrms clearly
dominates d; τrms is greater when d is larger. However, this tendency cannot be clearly observed at
d < 40 m, especially in the dense forest.

3. MEASUREMENT CAMPAIGN

The measurement of the propagation channel in the sugarcane field was conducted in the rural area
of Chonburi province located in the east of Thailand during October 17–27, 2017. The measurement
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Table 1. Channel sounding parameters.

Parameters Value
Center frequency 2.45 GHz
Number of frequency tones 134
Total bandwidth 45.6 MHz
Frequency tone spacing 343 kHz
Symbol duration 2.9 µs
Delay resolution 21.9 ns
Total measurement time 0.5 s
Antenna Directional outdoor WiFi antenna
for both Tx and Rx. Vertical polarization

Vertical beamwidth: 30◦

Horizontal beamwidth: 30◦

Gain: 14 dBi
Height: 1.7 m

was conducted by using a channel sounder that was specifically designed and developed in [30] for
the outdoor agriculture environment. The important parameters of the channel sounder used in the
measurement are summarized in Table 1. The Tx antenna was fixed at a certain point while the Rx
antenna was moved to the specific points and angular directions in the field manually. It takes 0.5 s for
one snapshot of the measurement and the time-invariant condition is assumed due to lack of dynamic
movement during the period. A preliminary measurement was also conducted to ensure that there was
no radio signal interference from other radio transmission systems.

The area of the sugarcane field is 50 × 40 m2. The sugarcane plant is ten months old with an
average height of 3.5 m as shown in Fig. 2. The range of the cane diameters is 0.03–0.04 m. The ridge
width is 0.15 m and the canes stand close to each other in each ridge. The crop cycle of the sugarcane is
approximately 11 months and the height is up to 4 m. Therefore, the radio prorogation result obtained
from this scenario is close to the most severe case. The antenna height was set at 1.7 m which is the
same as the height used in the real implementation in [31]. In addition, the effect of the relative angle
between the plant ridges and the LOS direction from the Tx to the Rx defined as φ on the path loss
was investigated. As shown in Fig. 3, the case in which the LOS direction is between two ridges of the

Figure 2. Measurement in the sugarcane field.
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(b)(a)

Figure 3. Measurement in the sugarcane field. (a) Measurement cases from φ = 0◦ to 40◦.
(b) Measurement cases from φ = 50◦ to 90◦.

sugarcane is defined as φ = 0◦. In each φ direction, the Tx is placed outside the field, and the Rx is
moved with 5m steps in the field. The Tx and Rx antennas were oriented for a maximum response.
The same process is repeated for the other angles.

4. DATA PROCESSING

The data processing involved in the path loss value estimation is first described. Then, the estimation of
the RMS delay spread is explained in Section 4.2 because the condition used to estimate this parameter
is also used to estimate the coherence bandwidth which will later be utilized to estimate the Rician
K-factor of the small-scale fading in Section 4.4.

4.1. Path Loss Estimation

The output of the channel sounder is the 45.6 MHz bandwidth channel transfer function H[t, k] of each
measurement point represented by dt and φ defined in Figs. 1 and 3, where k = 1, 2, . . . , K denotes
the frequency index, K the number of frequency tones shown in Table 1, t = 1, 2, . . . , T the snapshot
index, and a snapshot duration equals a symbol duration, as shown in Table 1. Then the Tx antenna
gain gTx and Rx antenna gain gRx are eliminated as

Ĥ[t, k] =
H[t, k]√
gTxgRx

. (6)

The average path gain value G of each measurement point can be obtained by averaging the power of
Ĥ[t, k] over k and t as

G =
1

KT

T∑
t=1

K∑
k=1

|Ĥ[t, k]|2. (7)

This average is applied in order to remove the small-scale fading due to the superposition of the multipath
components. This fluctuation will be modeled later by the Rician K-factor. Then, the path loss value
L of each measurement point, which is the inverse path gain ratio, is estimated as

L = 10 · log10

(
1
G

)
. dB (8)

Because the noise floor of the receiver after removing the antenna gain is −113 dB, only the measurement
points where L is smaller than 108 dB (another 5 dB is the safety margin) are considered in this work.
The excess loss E of each measurement point is then obtained by using Eq. (2).
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4.2. RMS Delay Spread

First, the channel impulse response ĥ[t, n] of the tth snapshot in each measurement point is estimated
from the channel transfer function [32] as

ĥ[t, n] =
1
K

K∑
k=1

ξW[k]Ĥ [t, k]exp
(
j
2π
K

kn
)
, (9)

where W is a windowing function for reducing the side lobe effect in estimating ĥ[i, n] and the correction
factor ξ = K/

∑K
k=1 W[k]. The average power delay profile P̄h[n] of each measurement point can be

obtained by

P̄h[n] =
1
T

T∑
t=1

∣∣ĥ[t, n]
∣∣2, (10)

To estimate the τrms in this work, as recommended in [29], the threshold for the noise exclusion is set
to 20 dB from the peak of P̄h[n]. Only the measurement points where the difference between the peak
and the noise level, i.e., the signal-to-noise ratio (SNR), is ≥ 25 dB, are taken into account. Finally, the
τrms of each measurement point is estimated by

τrms =

√√√√√√√√√

max∑
n=0

P̄h[n](τn − τmean)2

max∑
n=0

P̄h[n]

, (11)

where τn = nΔτ , Δτ is the delay resolution shown in Table 1, and the mean delay time τmean can be
calculated as

τmean =

max∑
n=0

τnP̄h[n]

max∑
n=0

P̄h[n]

. (12)

4.3. Coherence Bandwidth

In estimating the coherence bandwidth, only the measurement points that meet the SNR criterion
described in Section 4.2 are considered. First, the normalized frequency correlation function in each
measurement point is estimated [33] as

Rf[Δk] =

K−Δk∑
k=1

T∑
t=1

Ĥ[t, k]Ĥ∗[t, k + Δk]

K−Δk∑
k=1

T∑
t=1

|Ĥ[t, k]|2
. (13)

For a particular correlation level c, typically 0.9, 0.7, and 0.5 [33, 34], the coherence bandwidth is then
defined as

Bc = min(Δk) such that
∣∣Rf[Δk]

∣∣ ≤ c. (14)

However, there is an uncertainty relationship between the RMS delay spread and the coherence
bandwidth. In [35], this uncertainty relationship, called Fleury bound, was derived as

Bc ≥ arccos(c)
2πτrms

. (15)
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4.4. Rician K-Factor

The small-scale fading due to the superposition of multipath components can be observed in the channel
transfer function Ĥ[t, k] in either the time or frequency domain [28]. When moving the Rx node or
dynamic environment, this superposition over time, space, and frequency shares the same cause [28, 36]
because the motion of the nodes or the scatterers causes phase shift in each multipath component.
Hence, the fading statistics over time at a given frequency is similar to the statistics over frequency at
any given time [28].

In this work, the Rx position was fixed for a certain static period and then moved to a new
position. It can be thought as the sampling of the moving case which means that only superposition of
multiple components in the frequency domain (frequency-selective fading) can be observed. Therefore,
the statistics over the frequency of Ĥ[k] in each fixed location is analyzed in this paper. The main
condition of the statistical modeling of the small-scale fading due to such superposition in any domain,
as pointed out in [28], is that the samples in that domain have to be statistically independent random
values. Thus, in the case of frequency domain, the samples have to be picked up from a bandwidth wider
than the coherent bandwidth. Because the estimated Ĥ[t, k] is obtained from measurement in the time-
invariant condition, the average envelope channel transfer function over the time of each measurement
point represented by Eq. (16) is used:

H̄[k] =
1
T

T∑
t=1

∣∣Ĥ[t, k]
∣∣. (16)

The frequency tones of H̄[k] are divided into sub-bands. Each sub-band is equivalent to the coherence
bandwidth obtained from Eq. (14) using c = 0.7. In each sub-band, only the envelope value r of one
frequency tone is regularly sampled. The probability density function (PDF) of the r values selected
from H̄[k] of each measurement point is assumed to follow the Nakagami-Rice distribution [37] as

pric(r) =
r

σ2
· exp

[
−(r2 + S2)

2σ2

]
· I0

(rS

σ2

)
, (17)

where I0(x) is the modified Bessel function of the first kind, zeroth order. The mean square value of a
Nakagami-Rice distributed random variable r is given by

r2 = s2 + 2σ2, (18)
where S2 and 2σ2 are the power contributions by the strong dominant paths and by the frequency-
selective fading due to the superposition of the multipath components, respectively. The maximum
likelihood estimation (MLE) approach is used to estimate S2 and 2σ2. The Rician K-factor, which is
the ratio of these two terms, can be calculated as

Kfactor = 10 · log10

( S2

2σ2

)
. dB (19)

5. PROPOSED MODELING APPROACHES

This section highlights the differences between the existing modeling approaches described in Section 2
and the alternative approaches used in this work.

5.1. The Proposed Excess Loss Model

On the basis of the measurement result which will be presented in Section 6, the number of ridges
existing between the LOS of the Tx and Rx (nr) is found to be the reason behind the angular variation.
Therefore, the VO model is proposed to better represent such variation as

LEvo(nr) = Avo

{
1 − exp

(
−Rvo

Avo
nr

) }
. dB (20)

where Rvo and Avo are the initial gradient of the attenuation rate of E over nr and the maximum of E,
respectively.
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5.2. Model Selection

In this work, the results of E obtained using Eq. (2) are fitted with the empirical distance-dependent
model LE(d) in the following form,

E(d) = LE(d) + X, dB (21)

where X ∼ N(0, σ2) can be generally assumed to be a normal distributed random variable with zero
mean and variance σ2. To avoid the drawback of the existing approach described in Section 2.2, this
paper utilizes an appropriate approach which uses the Akaike information criterion (AIC) [38] where
the number of model parameters m is also taken into account. The general form of AIC is expressed as

AIC = −2log(L(Θ̂|y)) + 2m, (22)

where y = [y1, y2, . . . , ys] is the sample’s vector, Θ̂ = [θ1, θ2, . . . , θm] the parameters of the model, and
L(Θ̂|y) the likelihood function.

If the statistical model is appropriated to represent the channel parameters, the general form of
AIC in Eq. (22) is directly used. For the least squares fitting problem of Eq. (21), the AIC was derived
and presented in [39, pp. 63] as

AIC = slog(σ̂2) + 2m, (23)

where s denotes the sample size, and σ̂2 is the maximum likelihood estimate of σ2 and represented by

σ̂2 =

∑
X̂2

d

s
, (24)

where X̂d is the estimated X indexed by the vegetation depth d for a particular candidate model.
When the ratio s/m is small (say < 40) [39, pp. 66], the second-order variant of AIC called AICc,

which was derived by [40] and represented by Eq. (25), should be used as the model selection criterion.

AICc = AIC +
2m(m + 1)
s − m − 1

. (25)

5.3. Small-Scale Fading Modeling

In this work, the small-scale fading in the tall food grass field at a vegetation depth d < 40 m is modeled
by the K-factor of the Nakagami-Rice distribution. The relationship between the Rician K-factor and
other environmental factors — not only d — is investigated. In addition, as explained in Section 7,
the relationship between the small-scale fading parameter over the path loss value L is confirmed and
modeled.

5.4. Wideband Characteristic Modeling

The RMS delay spread τrms in the tall food grass field at d < 40 m is modeled. The dependence of τrms

on d and other environmental factors is confirmed by the hypothesis test. If the dependency hypothesis
is rejected, the statistical model is proposed to represent the randomness of the τrms values. In such a
case, the selection criterion of the statistical model expressed as Eq. (22) is applied.

6. PATH LOSS

The results of the excess loss E obtained using Eq. (2) in the sugarcane field are presented in Fig. 4.
Such E values of the measurement points in each angular direction are fitted by the MA model expressed
as Eq. (4) which gives the lowest AICc values obtained by Eqs. (23) and (25) among the MED, MA,
and ZNG models presented in Section 2.1.2. The variation in the two parameters of the MA model, Am

and R0, over the angular directions is shown in Fig. 5. It is obvious that the excess loss E increases
when the angle increases. However, it is not significantly different for some angles such as 20◦ and 30◦,
as well as for 70◦, 80◦ and 90◦. Considering two parameters of the MA model, Am shows a similar
level of approximately 40 dB in every angular direction except 0◦, while R0 is dependent on the angular
direction. Therefore, R0 which represents the loss rate in the shorter vegetation depth is the major
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Figure 4. Excess loss values fitted with the MA model.
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Figure 5. Parameters of the MA model in sugarcane field: (a) Am. (b) R0.

cause of the variation over the angular directions. However, similar values of R0 can be observed in
some consecutive angles. The reason for this angular variation will be presented in the next subsection.
Furthermore, a comparison with the parameters of the MA model in the forest/woodland that was
extensively reported in [11] shows that the R0 values in this agriculture field are significantly greater
except in the 0◦ direction.

6.1. Angular Variation

Considering the sugarcane planting pattern shown in Fig. 3, the major factor that makes the difference
in each measurement direction is the number of ridges between the LOSs of the Tx and Rx defined as
nr. In Fig. 6(a), d and nr of each measurement point in each angular direction are shown. Obviously,
the similar E and R0 values in 20◦ and 30◦ are because they have the same nr. This is also the case
with 70◦, 80◦ and 90◦. The plot of E values in all angular directions versus nr is presented in Fig. 6(b).
They can be represented well by the VO model described in Subsection 5.1:

LEvo(nr) = 42.9
{

1 − exp
(
−15.8

42.9
nr

) }
. dB (26)

This model also exhibits two gradients of the attenuation rate: the greater rate at smaller nr and
the smaller rate at larger nr. Because nr represents the magnitude of the vegetation length, which is
analogous to the vegetation depth d, the VO model in Eq. (26) can also be described by the interplay
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Figure 6. (a) Vegetation depth d and the number of ridges between LOS of Tx and Rx nr of each
measurement point, (b) excess loss values E fitted by the VO model.

of the coherent and incoherent components of radio propagation in the vegetation medium as explained
in Section 2.1.1. From this result, it can be concluded that the different values of nr in each angular
direction are the main reason for the angular excess loss variation. nr increases when the angle increases,
causing the strong angular dependence described previously. Note that with the ridge width at 0.15 m
as described in Section 3, the vegetation length of each ridge in each angle is not significantly different.

6.2. Procedure of Predicting the Path Loss at Any Point in the Tall Food Grass Field

The finding explained previously provides a way of predicting the attenuation at any point in the field by
using a few measurement efforts. This knowledge is useful for practical WSN planning and management.
The procedure can be described as follows:

• The first step is to obtain the results of the excess loss E in only one direction, e.g., 90◦, by either
dedicated measurement or derivation of the values on the basis of the received signal strength
indication (RSSI) collected from the existing wireless sensor nodes in the field.

• Second, the VO model LEvo(nr) expressed as (26) is applied by fitting the obtained results of E
over nr. From the measurement result described previously, this LEvo(nr) can be applied to any
angle.

• Finally, using d and nr, the path loss at any point can be predicted by

LL(d, nr) = LF(d) + LEvo(nr). dB (27)

The proposed prediction procedure assumes the following conditions:
• The crops have the same age of growth. Therefore, the leaf size and stalk size are not significantly

different over the crops.
• The crops are planted and distributed closely in a narrow ridge pattern. Such characteristics

should follow the main assumption such that the vegetation length of each ridge in each angle is
not significantly different.

• The crops must be higher than the antenna height.
Although further experimental validation is needed, the same procedure is expected to be applicable to
other food grass agriculture fields under the above conditions.

7. SMALL-SCALE FADING

As explained in Section 4.4, the Rician K-factor is used to represent the small-scale fading due to the
superposition of multipath components. Furthermore, the SNR criterion described in Section 4.2 is
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Figure 7. The plot of K-factor. (a) Over d and (b) over nr.
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Figure 8. Relationship between the K-factor and its corresponding path loss value L of each
measurement point.

applied to estimate Bc defined in Eq. (14), which is then used to estimate K-factor as explained in
Section 4.4. Therefore, the results of some measurement points are excluded. From now, when the term
K-factor is stated, it means the Rician K-factor in dB.

Considering the d dependence of the K-factor in Fig. 7(a), the different log-linear relationships
between 0◦ and other directions can be observed because there exists a small number of multipath
components due to a few obstructions in 0◦. On the other hand, considering nr, which represents the
level of obstructions, as shown in Fig. 7(b), the K-factor values in all directions can be fitted by a single
model. Note that the fitting line shown in Fig. 7(b) is linear, not log-linear, because nr = 0 in 0◦ and
log10(0) cannot be determined.

However, considering the physical mechanism of the multipath components due to the signal
reflections in the tall food grass field, the variation in the K-factor may not be caused by only an
individual factor but by the combination of both d and nr factors. Because the path loss is also
the function of these two factors as shown in Eq. (27), the relationship between the K-factor and its
corresponding path loss value L of each measurement point is examined and presented in Fig. 8. This
relationship can be represented as

Kfactor(L) = 37.58 − 0.25L + N(0, 2.41), (28)
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where L is in dB, and the last term N(0, σ) represents the normally distributed random variable with
zero mean and standard deviation σ. In regard to the measurement results of a suburban non-LOS
microcellular environment in [41], the relationship between the K-factor and L was also observed. This
result suggests that it might be possible to predict the K-factor at any point in the field if the path loss
information is available.

8. WIDEBAND CHARACTERISTIC

The RMS delay spread, τrms, of each measurement point is estimated by the approach described
in Section 4.2. Such values are plotted over d and nr as shown in Fig. 9. Note that the results
of some measurement points are excluded due to the SNR criterion described in Section 4.2. The
dependence of τrms on these two factors cannot be clearly observed. Statistically, the Pearson’s
correlation coefficient [42, pp. 331] between τrms and d, and between τrms and nr are −0.112 and 0.405,
respectively. By using the hypothesis test (t-test) for zero correlation described in [42, pp. 333], the
hypothesis of lack of association is accepted at a significance level (α) of 0.05 with p-values 0.612 and
0.055 for d and nr, respectively.

On the basis of randomness, the τrms parameter is modeled by the statistical distribution in this
work. The AIC defined as Eq. (22) is used as the criterion to select the best model among six well-
known probability models: Gaussian, Gamma, Nakagami-m, Nakagami-Rice, Rayleigh, and Weibull.
Consequently, the Weibull distribution which gives the lowest AIC value is used to model the τrms
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Figure 9. The plot of τrms over (a) d factor and (b) nr factor.
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parameter in this case. The PDF of the fitted Weibull model is expressed as

pwei(τrms) =

⎧⎨
⎩

b

a

(τrms

a

)b−1
exp

(
−(

τrms

a
)b

)
, τrms ≥ 0

0, τrms < 0
(29)

where the a and b parameters are 44.98 and 5.83, respectively. The empirical cumulative density function
(CDF) of τrms and its corresponding Weibull CDF are shown in Fig. 10.

9. CONCLUSION

This paper describes the radio wave propagation measurement campaign and characterization in a
sugarcane field representing tall food grass which is one of the common types of agricultural environment.
The measurement was conducted by using a channel sounder having a bandwidth of 45.6 MHz at
2.45 GHz. The location of the Tx was fixed, and then the Rx was moved over a vegetation depth
d and angular direction φ. Unlike other works, this measurement setting allows the study of not only
the d-dependent excess loss but also the variation in the excess loss over φ. In addition, the vegetation
depth range d in this measurement was shorter than 40 m, which is more applicable to the WSN in the
precision agriculture application than the ranges employed in the existing works. The conclusions and
significant observations of the measurement results are summarized as follows:

• The results of the excess loss E were fitted well with the MA model, and the model’s parameter is
strongly dependent on φ.

• While the numbers of ridges nr are different in most φ, the same relationship between E and nr

exists in every φ. In other words, nr is the reason for the angular dependence excess loss.
• The VO model as a function of one parameter (nr) instead of two parameters (d and φ) is proposed

to better represent the excess loss E.
• The prediction procedure of the path loss at any point in the field that employs a few measurement

efforts was proposed on the basis of the above finding.
• The relationship between the Rician K-factor and its corresponding path loss value L in each

measurement point could be fitted with the log-linear line. This suggests the possibility of predicting
the K-factor at any point in the field if the path loss information is available.

• The results of the RMS delay spread are independent of d and nr. Therefore, they are represented
by a statistical model. The Weibull distribution was chosen as it gives the best representation.
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