Vol. 85
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-07-09
Gain Enhancement of a Millimeter Wave Antipodal Vivaldi Antenna by Epsilon-Near-Zero Metamaterial
By
Progress In Electromagnetics Research C, Vol. 85, 105-116, 2018
Abstract
In this paper a compact antipodal Vivaldi antenna with dimensions of 40×85 mm2 for Ka band is presented. To enhance the antenna gain, epsilon near zero metamaterial (ENZ) unit cells are embedded at the same plane of the Vivaldi flare aperture. These ENZ unit cells have the advantage of confining the radiated fields with additional compact size. The obtained antenna exhibits an ultra-wide bandwidth from 23 GHz to 40 GHz with a reflection coefficient less than -10 dB. This is suitable for 5G applications at both 28 and 38 GHz. The antenna gain in this frequency band is found in the range from 14 to 17.2 dBi. The proposed antenna is designed by using CST-MW Studio, and the results are verified with experimental measurements.
Citation
Shaza El-Nady, Hany Mahmoud Zamel, Moataza Hindy, Abdelhalim A. Zekry, and Ahmed Attiya, "Gain Enhancement of a Millimeter Wave Antipodal Vivaldi Antenna by Epsilon-Near-Zero Metamaterial," Progress In Electromagnetics Research C, Vol. 85, 105-116, 2018.
doi:10.2528/PIERC18050302
References

1. Priyadharisini, S. G. and E. Rufus, "A double negative metamaterial inspired miniaturized rectangular patch antenna with improved gain and bandwidth," Progress In Electromagnetics Research Symposium --- Fall (PIERS --- FALL), 2907-2913, Singapore, Nov. 19-22, 2017.

2. Ziolkowiski, R. W., "Design, fabrication and testing of double negative metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 7, 1516-1528, 2003.
doi:10.1109/TAP.2003.813622

3. El-Nady, S., H. Zamel, M. Hendy, A. Attiya, and A. Zekry, "Performance enhancement of end-fire bow-tie antenna by using zero index metamaterial," Progress In Electromagnetics Research Symposium --- Fall (PIERS --- FALL), 1895-1900, Singapore, Nov. 19-22, 2017.

4. Popescu, A.-S., I. Bendoym, T. Rexhepi, and D. Crouse, "Anisotropic zero index material: A method of reducing the footprint of Vivaldi antennas in the UHF range," Progress In Electromagnetics Research C, Vol. 65, 33-43, 2016.
doi:10.2528/PIERC16031703

5. Zhou, B. and T. J. Cui, "Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 326-329, 2011.
doi:10.1109/LAWP.2011.2142170

6. Shaw, T., A. Roy, and D. Mitra, "Efficiency enhancement of wireless power transfer system using MNZ metamaterials," Progress In Electromagnetics Research C, Vol. 68, 11-19, 2016.
doi:10.2528/PIERC16081101

7. Wu, B.-I., W. Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701

8. Alu, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Physical Review B, Vol. 75, No. 15, 2007.
doi:10.1103/PhysRevB.75.155410

9. Silveirinha, M. G. and N. Engheta, "Tunneling of electromagnetic energy through sub-wavelength channels and bends using ε-near-zero materials," Physical Review Letters, Vol. 97, No. 15, 2006.
doi:10.1103/PhysRevLett.97.157403

10. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Physical Review Letters, Vol. 89, No. 21, 213902, 2002.
doi:10.1103/PhysRevLett.89.213902

11. Wang, B. and K.-M. Huang, "Shaping the radiation pattern with mu and epsilon-near-zero metamaterials ," Progress In Electromagnetics Research, Vol. 106, 107-119, 2010.
doi:10.2528/PIER10060103

12. Silveirinha, M. G., A. Alu, B. Edwards, and N. Engheta, "Overview of theory and applications of epsilon-near-zero materials," URSI General Assembly, 44-47, 2008.

13. Ziolkowski, R. W., "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Physical Review E, Vol. 70, No. 4, 2004.
doi:10.1103/PhysRevE.70.046608

14. Zhou, B., H. Li, X. Zou, and T.-J. Cui, "Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero index metamaterial," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.
doi:10.2528/PIER11072710

15. Pandey, G., H. Singh, and M. Meshram, "Meander-line-based inhomogeneous anisotropic artificial material for gain enhancement of UWB Vivaldi antenna," Applied Physics A, Vol. 122, No. 2, 134(1-9), 2016.
doi:10.1007/s00339-015-9569-2

16. Nor, N. M., M. H. Jamaluddin, M. R. Kamarudin, and M. Khalily, "Rectangular dielectric resonator antenna array for 28 GHz applications," Progress In Electromagnetics Research C, Vol. 63, 53-61, 2016.
doi:10.2528/PIERC16022902

17. Parchin, N., M. Shen, and G. Pedersen, "End-Fire phased array 5G antenna design using leaf-shaped bow-tie elements for 28/38 GHz MIMO applications," IEEE International Conference on Ubiquitous Wireless Broadband, 2016.

18. Haraz, O., M. Ali, S. Alshebeili, and A. Sebak, "Design of a 28/38 GHz dual-band printed slot antenna for the future 5G mobile communication networks," IEEE International Antennas Symposium and Propagtion, 1532-1533, 2015.

19. Hamzah, N. and K. A. Othman, "Designing Vivaldi antenna with various sizes using CST software," Proceeding of the World Congress on Engineering (WCE 2011), 1-5, London, UK, 2011.

20. Wang, Y. W., G. M. Wang, and B. F. Zong, "Directivity improvement of Vivaldi antenna using double-slot structure," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1380-1383, 2013.
doi:10.1109/LAWP.2013.2285182

21. Molaei, A., M. Kaboli, S. A. Mirtaheri, and S. Abrishamian, "Beam-tilting improvement of balanced antipodal vivaldi antenna using a dielectric lens," Proc. 2nd Iranian Conference on Engineering Electromagnetics, 577-581, Tehran, Iran, 2014.

22. Fei, P., Y. C. Jiao, W. Hu, and F. S. Zhang, "A miniaturized antipodal Vivaldi antenna with improved radiation characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 127-130, 2011.

23. Li, L., X. Xia, Y. Liu, and T. Yang, "Wideband balanced antipodal Vivaldi antenna with enhanced radiation parameters," Progress In Electromagnetics Research C, Vol. 66, 163-171, 2016.
doi:10.2528/PIERC16051704

24. Wan, F., J. Chen, and B. Li, "A novel ultra-wideband antipodal Vivaldi antenna with trapezoidal dielectric substrate," Microwave and Optical Technology Letters, Vol. 60, No. 2, 449-455, 2018.
doi:10.1002/mop.30990

25. Sun, M., Z. N. Chen, and X. Qing, "Gain enhancement of 60-GHz antipodal tapered slot antenna using zero-index metamaterial," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 1741-1746, 2013.
doi:10.1109/TAP.2012.2237154

26. Bhaskar, M., E. Johari, Z. Akhter, and M. J. Akhtar, "Gain enhancement of the Vivaldi antenna with band notch characteristics using zero-index metamaterial," Microwave and Optical Technology Letters, Vol. 58, No. 1, 233-238, 2016.
doi:10.1002/mop.29534

27. Chen, X., T. M. Grzegorczyk., B. I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, No. 1, 2004.

28. Smith, D., S. Schultz, P. Markos, and C. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, 1-5, 2002.

29. Teni, G., N. Zhang, J. H. Qiu, and P. Y. Zhang, "Research on a novel miniaturized antipodal Vivaldi antenna with improved radiation," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 417-420, 2013.
doi:10.1109/LAWP.2013.2253592

30. Nassar, I. T. and T. M. Weller, "A novel method for improving antipodal Vivaldi antenna performance," IEEE Transactions on Antennas and Propagation, Vol. 63, 3321-3324, 2015.
doi:10.1109/TAP.2015.2429749

31. Moosazadeh, M. and S. Kharkovsky, "Development of the antipodal Vivaldi antenna for detection of cracks inside concrete members," Microwave and Optical Technology Letters, Vol. 57, No. 7, 1573-1578, 2015.
doi:10.1002/mop.29158

32. Moosazadeh, M., S. Kharkovsky, and J. T. Case, "Microwave and millimetre wave antipodal Vivaldi antenna with trapezoid-shaped dielectric lens for imaging of construction materials," IET Microwaves Antennas & Propagation, Vol. 10, No. 3, 301-309, 2016.
doi:10.1049/iet-map.2015.0374

33. Wang, N., M. Fang, J. Qiu, and L. Xiao, "Improved design of balanced antipodal Vivaldi for MMW applications," Antennas and Propagation & USNC/URSI National Radio Science Meeting, IEEE International Symposium, 2615-2616, 2017.

34. Wan, F., J. Chen, and B. Li, "A novel ultra-wideband antipodal Vivaldi antenna with trapezoidal dielectric substrate," Microwave and Optical Technology Letters, Vol. 60, No. 2, 449-455, 2018.
doi:10.1002/mop.30990

35. Kerns, D. M., "New method of gain measurement using two identical antennas," Electronics Letters, Vol. 6, No. 11, 348-349, 1970.
doi:10.1049/el:19700245