Vol. 82
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-03-21
Research on Space-Time Adaptive Processing with Respect to the Signal Powers
By
Progress In Electromagnetics Research C, Vol. 82, 99-107, 2018
Abstract
Diverse array processing methods with higher order statistics (HOS) have been developed in the last three decades. One of the main interests in using HOS relies on the increase of effective aperture and the number of sensors of the considered array. In this work, we further exploit space-time adaptive processing (STAP) using HOS based on the phased array radar with uniform linear array (ULA). We implement STAP with respect to signal powers instead of with respect to signal amplitudes as the convention. The purpose of this paper is to provide some important insights into the STAP with respect to signal powers (SP-STAP), such as the output response, output signal-to-interference-plus-noise ratio (SINR), minimum detectable velocity (MDV) performance and effect ofinternal clutter motion (ICM). Compared with the conventional STAP under the condition of the same number of array elements and transmitting pulses, the simulation results show that SP-STAP can gain narrower target main beam, lower side-lobe levels, better MDV performance and less deleterious effect of ICM.
Citation
Wei Wang, Lin Zou, and Xuegang Wang, "Research on Space-Time Adaptive Processing with Respect to the Signal Powers," Progress In Electromagnetics Research C, Vol. 82, 99-107, 2018.
doi:10.2528/PIERC18011401
References

1. Melvin, W. L., "A stap overview," IEEE Aerospace and Electronic Systems Magazine, Vol. 19, No. 1, 9-35, Jan. 2004.
doi:10.1109/MAES.2004.1263229

2. Klemm, R., "Principles of space-time adaptive processing,", The Institution of Engineering and Technology, London, UK, 2006.

3. Guerci, J. R., Space-time Adaptive Processing for Radar, Artech House, Boston, USA, 2003.

4. Li, X. M., D. Z. Feng, H. W. Liu, and D. Luo, "Dimension-reduced space-time adaptive clutter suppression algorithm based on lower-rank approximation to weight matrix in airborne radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 50, No. 1, 53-69, Jan. 2014.
doi:10.1109/TAES.2013.080153

5. Liu, H. W., Y. S. Zhang, Y. D. Guo, et al. "A novel STAP algorithm for airborne MIMO radar based on temporally correlated multiple sparse Bayesian learning," Mathematical Problems in Engineering, 2016.

6. Chen, C. Y. and P. P. Vaidyanathan, "MIMO radar space-time adaptive processing using prolate spheroidal wave functions," IEEE Trans. Signal Process., Vol. 56, No. 2, 623-635, Feb. 2008.
doi:10.1109/TSP.2007.907917

7. Leatherwood, D. A., W. L. Melvin, and R. Acree, "Configuring a sparse aperture antenna for spaceborne MTI radar," IEEE Radar Conference, 139-146, Alabama, USA, May 2003.

8. Morabito, A. F., A. R. Lagana, and T. Isernia, "Isophoric array antennas with a low number of control points: A `size tapered’ solution," Progress In Electromagnetics Research Letters, Vol. 36, 121-131, 2013.
doi:10.2528/PIERL12092705

9. Tang, B., X. Yang, H. Wu, and W. Peng, "Research on clutter spectra and STAP for sparse antenna arrays," International Conference on Communications, Circuits and Systems (ICCCAS), Vol. 1, 280-283, Chengdu, China, Nov. 2013.

10. Mendel, J. M., "Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications," Proceedings of the IEEE, Vol. 79, No. 3, 278-305, Mar. 1991.
doi:10.1109/5.75086

11. Cardoso, J. F. and E. Moulines, "Asymptotic performance analysis ofdirection finding algorithms based on fourth order cumulants," IEEE Trans. Signal Process., Vol. 43, No. 1, 214-224, Jan. 1995.
doi:10.1109/78.365301

12. Gonen, E. and J. M. Mendel, "Applications of cumulants to array processing --- Part VI: Polarization and direction of arrival estimation with minimally constrained arrays," IEEE Trans. Signal Process., Vol. 47, No. 9, 2589-2592, Sep. 1999.
doi:10.1109/78.782216

13. De Lathauwer, L., B. De Moor, and J. Vandewalle, "ICA techniques formore sources than sensors," Proc. Workshop Higher Order Statistics, Caesara, Israel, Jun. 1999.

14. Ferreol, A., L. Albera, and P. Chevalier, "Fourth order blind identification of under determined mixtures of sources (FOBIUM)," Proc. ICASSP, 41-44, Hong Kong, Apr. 2003.

15. Albera, L., A. Ferreol, P. Comon, and P. Chevalier, "Blind identification of overcomplete mixtures of sources (BIOME)," Linear Algebra and Its Applications, Vol. 391, 3-30, Nov. 2004.

16. Chevalier, P., A. Ferreol, and L. Albera, "High resolution direction finding from higher order statistics: The 2q-MUSIC algorithm," IEEE Trans. Signal Process., Vol. 54, No. 8, 2986-2997, Aug. 2006.
doi:10.1109/TSP.2006.877661

17. Birot, G., L. Albera, and P. Chevalier, "Sequential high-resolution direction finding from higher order statistics," IEEE Trans. Signal Process., Vol. 58, No. 8, 4144-4155, Aug. 2010.
doi:10.1109/TSP.2010.2049569

18. Wang, F., X. Cui, and M. Lu, "Direction finding using higher order statistics without redundancy," IEEE Signal Processing Letters, Vol. 20, No. 5, 495-498, May 2013.
doi:10.1109/LSP.2013.2252010

19. Dogan, M. C. and J. M. Mendel, "Applications of cumulants to array processing --- Part I: Aperture extension and array calibration," IEEE Trans. Signal Process., Vol. 43, No. 5, 1200-1216, May 1995.
doi:10.1109/78.382404

20. Chevalier, P. and A. Ferreol, "On the virtual array concept for the fourthorder direction finding problem," IEEE Trans. Signal Process., Vol. 47, No. 9, 2592-2595, Sep. 1999.
doi:10.1109/78.782217

21. Chevalier, P., L. Albera, A. Ferreol, and P. Comon, "On the virtual array concept for higher order array processing," IEEE Trans. Signal Process., Vol. 53, No. 4, 1254-1271, Apr. 2005.
doi:10.1109/TSP.2005.843703

22. Pal, P. and P. P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees of freedom," IEEE Trans. Signal Process., Vol. 58, No. 8, 4167-4181, Aug. 2010.
doi:10.1109/TSP.2010.2049264

23. Vouras, P., "Fully adaptive space-time processing on nested arrays," IEEE Radar Conference, 0858-0863, Virginia, USA, May 2015.

24. Morabito, A. F., A. R. Lagana, G. Sorbello, and T. Isernia, "Mask-constrained power synthesis of maximally sparse linear arrays through a compressive-sensing-driven strategy," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 10, 1384-1396, Oct. 2015.
doi:10.1080/09205071.2015.1046561