Vol. 82
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-03-22
Multitarget Tracking Based on PHD Smoother with Unknown Clutter Spatial Density
By
Progress In Electromagnetics Research C, Vol. 82, 123-133, 2018
Abstract
Conventional multitarget tracking techniques assume that clutter density is known a priori and use it directly in the recursive processing. However, in practical surveillance systems, the spatial distribution density of measurements generated by clutter is unknown and time-variant. Therefore, in order to achieve better tracking performance as well as the ability to evaluate the surveillance environment, we propose a fully forward-backward probability hypothesis density (PHD) smoother integrated with clutter spatial density estimator in this paper. Details on the sequential Monte Carlo (SMC) implementation method are presented as well. Simulation results of tracking performance evaluation verify the effectiveness of the proposed PHD smoother.
Citation
Ran Zhu, Yunli Long, and Wei An, "Multitarget Tracking Based on PHD Smoother with Unknown Clutter Spatial Density," Progress In Electromagnetics Research C, Vol. 82, 123-133, 2018.
doi:10.2528/PIERC17120408
References

1. Mahler, R., Statistical Multisource-Multitarget Information Fusion, Artech House, Norwood, MA, 2007.

2. Qiu, C., Z. Zhang, H. Lu, and H. Luo, "A survey of motion-based multitarget tracking methods," Progress In Electromagnetics Research B, Vol. 62, 195-223, 2015.
doi:10.2528/PIERB15010503

3. Mahler, R., "Multi-target Bayes filtering via first-order multi-target moments," IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 4, 1152-1178, 2003.
doi:10.1109/TAES.2003.1261119

4. Mahler, R., "PHD filters of higher order in target number," IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 3, 1523-1543, 2007.
doi:10.1109/TAES.2007.4441756

5. Qiu, C., Z. Zhang, H. Lu, and Y. Wu, "Amplitude-aided CPHD filter for multitarget tracking in infrared images," Progress In Electromagnetics Research B, Vol. 61, 211-224, 2014.
doi:10.2528/PIERB14092101

6. Vo, B. T., B. N. Vo, and A. Cantoni, "The cardinality balanced multitarget multi-Bernoulli filter and its implementations," EEE Transactions on Signal Processing, Vol. 57, No. 2, 409-423, 2009.
doi:10.1109/TSP.2008.2007924

7. Vo, B. N., S. Singh, and A. Doucet, "Sequential Monte Carlo methods for multitarget filtering with random finite sets," IEEE Transactions on Aerospace and Electronic Systems, Vol. 41, No. 4, 1224-1245, 2005.
doi:10.1109/TAES.2005.1561884

8. Zajic, T. and R. Mahler, "Particle-systems implementation of the PHD multitarget-tracking filter," Proceedings of SPIE --- The International Society for Optical Engineering, 291-299, Maspalomas, Spain, 2003.
doi:10.2528/PIER11081901

9. Hong, S., L.Wang, Z. Shi, and K. Chen, "Simplified particle PHD filter for multiple-target tracking: algorithm and architecture," Progress In Electromagnetics Research, Vol. 120, 481-498, 2011.
doi:10.1109/TSP.2006.881190

10. Vo, B. N. and W. K. Ma, "The Gaussian mixture probability hypothesis density filter," IEEE Transactions on Signal Processing, Vol. 54, No. 11, 4091-4104, 2006.
doi:10.2528/PIERC15121802

11. Gong, X., Z. Xiao, and J. Xu, "Novel multi-target tracking algorithm for automotive radar," Progress In Electromagnetics Research C, Vol. 62, 35-42, 2016.
doi:10.2528/PIERC15121802

12. Mahler, R., B. N. Vo, and B. T. Vo, "The forward-backward probability hypothesis density smoother," Information Fusion, Vol. 48, No. 1, 1-8, 2011.
doi:10.1109/TAES.2012.6129665

13. Mahler, R., B. T. Vo, and B. N. Vo, "Forward-backward probability hypothesis density smoothing," IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, No. 1, 707-728, 2012.
doi:10.1109/TAES.2012.6129665

14. Vo, B. N., B. T. Vo, and R. Mahler, "A closed form solution to the probability hypothesis density smoother," Proceedings of IEEE International Conference on Information Fusion, 1-8, Edinburgh, UK, 2010.
doi:10.1109/TSP.2011.2168519

15. Vo, B. N., B. T. Vo, and R. Mahler, "Closed-form solutions to forward-backward smoothing," IEEE Transactions on Signal Processing, Vol. 60, No. 1, 2-17, 2011.
doi:10.1109/TAES.2011.6034637

16. Nadarajah, N., T. Kirubarajan, T. Lang, M. Mcdonald, and K. Punithakumar, "Multitarget tracking using probability hypothesis density smoothing," IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 4, 2344-2360, 2011.
doi:10.1109/TAES.2011.6034637

17. Nagappa, S. and D. E. Clark, "Fast sequential Monte Carlo PHD smoothing," Proceedings of IEEE International Conference on Information Fusion, 1-7, Chicago, USA, 2011.
doi:10.1109/LSP.2014.2310137

18. Wong, S., B. T. Vo, and F. Papi, "Bernoulli forward-backward smoothing for track-before-detect," IEEE Signal Processing Letters, Vol. 21, No. 6, 727-731, 2014.
doi:10.1109/TAES.2012.6178058

19. Chen, X., R. Tharmarasa, M. Pelletier, and T. Kirubarajan, "Integrated clutter estimation and target tracking using poisson point processes," IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, No. 2, 1210-1235, 2009.
doi:10.1109/TAES.2012.6178058

20. Chen, X., R. Tharmarasa, T. Kirubarajan, and M. Pelletier, "Online clutter estimation using a Gaussian kernel density estimator for target tracking," Proceedings of IEEE Internati9onal Conference on Information Fusion, 1-9, Chicago, USA, 2011.
doi:10.1049/iet-rsn.2014.0037

21. Chen, X., R. Tharmarasa, T. Kirubarajan, and M. Mcdonald, "Online clutter estimation using a Gaussian kernel density estimator for multitarget tracking," IET Radar Sonar and Navigation, Vol. 9, No. 1, 1-9, 2015.
doi:10.1049/iet-rsn.2014.0037

22. Ikoma, N. and S. Godsill, "Extended object tracking with unknown association, missing observations, and clutter using particle filters," Proceedings of IEEE Workshop on Statistical Signal Processing, 502-505, St. Louis, USA, 2003.

23. Kim, W. C., D. Musicki, T. L. Song, and J. S. Bae, "A multi scan clutter density estimator," Proceedings of IEEE International Conference on Information Fusion, 707-713, Istanbul, Turkey, 2013.

24. Mahler, R., "CPHD and PHD filters for unknown backgrounds II: Multitarget filtering in dynamic clutter," Proceedings of International Society for Optics and Photonics In Sensors and Systems for Space Applications III, Vol. 7330, 73300L, Orlando, Florida, USA, 2009.
doi:10.1109/TAES.2010.5595616

25. Feng, L., C. Han, and W. Liu, "Estimating unknown clutter intensity for PHD filter," IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, No. 4, 2066-2078, 2010.
doi:10.1109/TAES.2010.5595616

26. Li, C., Z. Jiang, B. Li, and X. Zhou, "Gaussian mixture PHD smoothing filter in unknown clutter," Journal of Xidian University, Vol. 4, 98-104, 2015.
doi:10.1049/iet-rsn.2015.0588

27. Shi, Y. F., S. Y. Chong, and T. L. Song, "Integrated particle smoothing for target tracking in clutter," IET Radar, Sonar & Navigation, Vol. 11, No. 4, 551-562, 2016.
doi:10.1109/TSP.2008.920469

28. Schuhmacher, D., B. T. Vo, and B. N. Vo, "A Consistent metric for performance evaluation of multi-object filters," IEEE Transactions on Signal Processing, Vol. 56, No. 8, 3447-3457, 2008.
doi:10.1109/TSP.2008.920469