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Multitarget Tracking Based on PHD Smoother with Unknown
Clutter Spatial Density

Ran Zhu*, Yunli Long, and Wei An

Abstract—Conventional multitarget tracking techniques assume that clutter density is known a priori
and use it directly in the recursive processing. However, in practical surveillance systems, the spatial
distribution density of measurements generated by clutter is unknown and time-variant. Therefore,
in order to achieve better tracking performance as well as the ability to evaluate the surveillance
environment, we propose a fully forward-backward probability hypothesis density (PHD) smoother
integrated with clutter spatial density estimator in this paper. Details on the sequential Monte Carlo
(SMC) implementation method are presented as well. Simulation results of tracking performance
evaluation verify the effectiveness of the proposed PHD smoother.

1. INTRODUCTION

Multitarget tracking requires simultaneous detection and estimation of multiple targets from a sequence
of measurements involving false alarm, miss-detection and target birth/disappear. Typical mutlitarget
tracking technique includes joint probabilistic data association (JPDA), multiple hypothesis tracking
(MHT), particle filter (PF), etc. A thorough study and analysis on multitarget tracking methods for
practical surveillance systems is well studied in [1, 2].

Random finite set (RFS) is a natural extension of the concept of random vector and provides
a natural way of modeling such multitarget sensing phenomenologies. Based on RFS theory, finite
set statistics (FISST) provides a generic formulation of the recursive multitarget states and generates
numerous multi-sensor multitarget filters in recent years. The developments of probability hypothesis
density (PHD) filter [3], cardinalized PHD (CPHD) filter [4, 5] and multi-Bernoulli filter [6] provide
systematic solutions to multiple targets tracking problem based on RFS modeling with different prior
probability distribution assumptions. On the other hand, techniques such as sequential Monte Carlo
(SMC) implementations [7–9] and Gaussian mixture (GM) implementations [10, 11] are widely applied
to fulfill novel extensions.

In order to yield better estimates by delaying the decision time and using the data till a later time,
a forward-backward PHD smoother involving forward filtering followed by a backward smoother with
particle implementation was proposed in [12, 13]. Closed-form Gaussian sum smoother under linear
Gaussian multitarget assumptions is well studied in [14, 15]. Nadarajah et al. provide a smoothing
algorithm combined with multiple model approaches, which is a natural extension of the PHD smoothing
algorithm for tracking multiple maneuvering targets [16]. In addition, the authors provide a fast SMC
implementation approach to fulfill an efficient PHD smoothing in [17]. Image observation Bernoulli
smoother incorporating the sensor model with multi-scan information is investigated in [18].

Note that in the multitarget filters/smoothers mentioned above, the clutter spatial distribution
model and its parameters are assumed to be known a priori. However, in a practical multitarget tracking
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system, the clutter parameters are not time-invariant due to challenging surveillance environment.
Therefore, there is a need to both track the multitarget states and evaluate the current clutter density. A
PHD filter with clutter estimation is derived in [19] based on the Poisson point process assumption. Later
on, the authors further proposed an online clutter estimation method under the Gaussian kernel density
estimation framework in [20, 21]. In particular, the work [22] focuses on the extended object tracking
with unknown parameters in the measurement process. Furthermore, PHD filtering using multiple scans
to estimate non-stationary clutter density is proposed in [23]. In this paper, we follow the previous work
and present a forward-backward PHD smoother integrated with clutter density estimation.

The organization of the paper is as follows. Conventional PHD filter with a straightforward
unknown clutter density estimator is introduced in Section 2. Theoretical formulations of the forward-
backward smoothing recursion of both real target states and clutter states simultaneously are introduced
in Section 3. Sequential Monte Carlo implementation of the proposed PHD smoother with clutter
parameter estimator is discussed in Section 4. Performance evaluation results are presented in Section 5,
and concluding remarks are given in Section 6.

2. PHD FILTER WITH CLUTTER PARAMETER ESTIMATOR

Following the FISST theory proposed in [1], the multitarget state Xk in a standard PHD filter is modeled
as an RFS. We let the multitarget state density of time step k′ be denoted as fk′|k(Xk′ |Z1:k) given the
measurements Zk up to time step k. Multitarget state transition function is fk|k−1(Xk|Xk−1), and
gk(Zk|Xk) is the multitarget likelihood function. Under the generalized Bayesian recursion framework,
multitarget state prediction and update can be formulated as

fk|k−1(Xk|Z1:k−1) =
∫

fk|k−1(Xk|Xk−1)fk−1|k−1(Xk−1|Z1:k−1)δXk−1 (1)

and

fk|k(Xk|Z1:k) =
gk(Zk|Xk)fk|k−1(Xk|Z1:k−1)

fk(Zk|Z1:k−1)
(2)

where
fk(Zk|Z1:k−1) =

∫
gk(Zk|Xk)fk|k−1(Xk|Z1:k−1)δXk (3)

is the normalization term.
Based on the FISST theory, probability hypothesis density function (or PHD intensity) is the first-

order moment of the multitarget state density [3]. In this way, the recursion in the mutlitarget state
space is simplified to the recursion of PHD intensity in the single target state space. Let Dk′|k(xk′ |Z1:k)
denote PHD function at time step k′ given the measurements up to time k, then the prediction step of
the PHD filter is shown as

Dk|k−1(xk|Z1:k−1) = bk(xk) +
∫

ps(xk−1)fk|k−1(xk|xk−1)Dk−1|k−1(xk−1|Z1:k−1)dxk−1 (4)

where bk(xk) is the PHD intensity of new born targets, and ps(xk) is the surviving probability of target
of state xk to the next time step. fk|k−1(xk|xk−1) denotes the state transition equation of a single target.

According to the study [1, 3], update step of the PHD intensity is

Dk|k(xk|Z1:k) =


1− pd(xk) + pd(xk)

∑

z∈Zk

h(z|xk)
λc(z) +

∫
pd(xk)h(z|xk)Dk|k−1(xk|Z1:k−1)dxk




×Dk|k−1(xk|Z1:k−1) (5)

where pd(xk) is the detection probability of target xk, and h(z|xk) is the likelihood function in the
observe model. λ and c(z) are, respectively, the prior average of number of measurements per scan and
the spatial distribution of false alarms generated by the clutters. However, in the practical applications,
it is impossible to determine the parameter set for the PHD filter in advance. Therefore, the ability to
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simultaneously estimate unknown clutter density is required to improve the capability and robustness
of the PHD filter [24].

In the previous work [25] and [26], the authors propose an intuitive way to estimate the clutter
density along with the filtering process. Assume that measurement set observed at time step k is
denoted as Zk = {z1, . . . , zmk

}, where mk = |Zk| is the number of measurements. M = {m1, . . . , mL}
is the collection of mk over a sliding window of length L. Then the likelihood of M given λ is

f(M |λ) =
L∏

k=1

f(mk|λ) = e−λL · λ
∑L

k=1 mk/
L∏

k=1

mk! (6)

Take the maximum likelihood estimation (MLE) of λ by solving the equation ∂ log f(M |λ)/∂λ = 0.
Then we get

λ̂ = arg max
λ

{log f(M |λ)} =
1
L

L∑

k=1

Mk (7)

The spatial distribution of measurement z can be approximated by the finite mixture models
(FMM) technique as follows.

c(z) = f(z|θ) =
N∑

i=1

ωifi(z|θj) (8)

where θj and ωj are the parameter and portion weight of approximation, and
∑N

i=1 ωj = 1. If we assume
that the elements in the measurement Zk are independent, then the likelihood of Zk given θ is

f(Zk|θ) =
mk∏

i=1

f(zi|θ) =
mk∏

i=1

N∑

j=1

ωjfj(zi|θj) (9)

The MLE of parameter θ can be calculated by

θ̂ = arg max
θ

{log f(Z|θ)} (10)

Note that the above estimation is more complicated than the estimation of λ. Therefore, expectation
maximum (EM) or Markov chain Monte Carlo (MCMC) technique is required. For implementation
details such as how to select distribution functions fj , please refer to [25].

3. PHD SMOOTHING WITH CLUTTER PARAMETER ESTIMATOR

As for the target state smoothing, a single-target tracking algorithm dealing with uncertain clutter
measurements is well studied in [27]. In this paper, we focus on the PHD smoothing of multi-target states
with adaptive clutter density estimation. At first, we present theoretical multitarget state smoothing
when the Poisson clutter model has unknown parameters following the coupled modeling of both target
state and clutter state as proposed in [19].

In this paper, we simultaneously model the moving targets and relatively static clutters as RFSs
to be estimated. Let D

(X)
k′|k(xk′ |Z1:k) and D

(C)
k′|k(ck′ |Z1:k) denote the PHD intensity of the target states

and the clutter states at time step k′ given the measurements up to time k, respectively. If we assume
that the state evolution of targets does not affect the clutter states, the predict step contains 2 separate
operations. Note that, for simplicity, no spawn new targets are considered in this paper.

D
(X)
k|k−1(xk|Z1:k−1) = b

(X)
k (xk) +

∫
p(X)

s (xk−1)f
(X)
k|k−1(xk|xk−1)D

(X)
k−1|k−1(xk−1|Z1:k−1)dxk−1 (11)

D
(C)
k|k−1(ck|Z1:k−1) = b

(C)
k (ck) +

∫
p(C)

s (ck−1)f
(C)
k|k−1(ck|ck−1)D

(C)
k−1|k−1(ck−1|Z1:k−1)dck−1 (12)
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Since we cannot determine whether a measurement is generated by a target or by the clutter, the
update step in the PHD intensity recursion has to be performed in a coupled way [19].

D
(X)
k|k (xk|Z1:k) =


1− pd(xk) + pd(xk)

∑

z∈Zk

h(X)(z|xk)
L(z)


D

(X)
k|k−1(xk|Z1:k−1) (13)

D
(C)
k|k (ck|Z1:k) =


 ∑

z∈Zk

h(C)(z|ck)
L(z)


D

(C)
k|k−1(ck|Z1:k−1) (14)

In the above, the coupled likelihood function is denoted as

L(z) =
∫

pd(xk)h(X)(z|xk)D
(X)
k|k−1(xk|Z1:k−1)dxk +

∫
h(C)(z|ck)D

(C)
k|k−1(ck|Z1:k−1)dck (15)

where h(X)(z|xk) and h(C)(z|ck) are the likelihood function of target generated measurement and clutter
generated measurement, respectively. For simplicity, we assume that pd(ck) ≡ 1, which means that a
clutter generated measurement can always be detected.

Target states smoothing is a straightforward way to improve the tracking performance of a
surveillance system. Given the measurements collected up to current time, the smoothed multitarget
state of a previous time step can be calculated as

ft|k(Xt|Z1:k) = ft|t(Xt|Z1:t)
∫

ft+1|k(Xt+1|Z1:k)ft+1|t(Xt+1|Xt)
ft+1|t(Xt+1|Z1:t)

δXt+1 (16)

In addition, clutter states smoothing is required as well for some specific applications, which have
the need to evaluate the spatial-temporal distribution of the clutters. Following the assumption on the
state evolution independency in the prediction step, the smoothing step should be performed separately
as well. p

(X)
s (xt) and p

(C)
s (ct) are the surviving probability of a target/clutter state persist to the next

time step, respectively [13, 16].

D
(X)
t|k (xt|Z1:k) =


1−p(X)

s (xt)+p(X)
s (xt)

∫ D
(X)
t+1|k(xt+1|Z1:k)f

(X)
t+1|t(xt+1|xt)

D
(X)
t+1|t(xt+1|Z1:t)

dxt+1


D

(X)
t|t (xt|Z1:t) (17)

D
(C)
t|k (ct|Z1:k) =


1− p(C)

s (ct) + p(C)
s (ct)

∫ D
(C)
t+1|k(ct+1|Z1:k)f

(C)
t+1|t(ct+1|ct)

D
(C)
t+1|t(ct+1|Z1:t)

dct+1


D

(C)
t|t (ct|Z1:t)(18)

Finally, we present the overall recursion of the PHD intensity of both the target and clutters in Fig. 1
to illustrate the processing scheme of the proposed PHD smoother integrated with clutter estimator (R
is the backward smoothing depth).
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Figure 1. Recursive forward-backward smoothing process with clutter estimation.

4. SMC IMPLEMENTATION METHOD

In this part, a thorough SMC implementation of the above PHD smoothing algorithm is presented. The
overall processing scheme consists of 5 recursive steps: prediction, update, smoothing, resampling and
state estimation.
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Step 1 Prediction

Given the prior target state particle set {x(p)
k−1, ω

(p)
k−1}

L
(X)
k−1

p=1 and the clutter state particle

set {c(p)
k−1, w

(p)
k−1}

L
(C)
k−1

p=1 , the prediction step is performed separately. q
(X)
k (·|x(p)

k−1, Zk), p
(X)
k (·|Zk),

q
(C)
k (·|c(p)

k−1, Zk) and p
(C)
k (·|Zk) are the proposal densities for applying importance sampling of

predicted/birth targets and predicted/birth clutters.
For target state prediction, we sample the predicted target states

x̃
(p)
k ∼ q

(X)
k

(
·|x(p)

k−1, Zk

)
, p = 1, . . . , L

(X)
k−1 (19)

and the predicted weights are

ω̃
(p)
k|k−1 =

p
(X)
s

(
x

(p)
k−1

)
f

(X)
k|k−1

(
x̃

(p)
k |x(p)

k−1

)

q
(X)
k

(
x̃

(p)
k |x(p)

k−1, Zk

) ω
(p)
k−1 (20)

Then we sample the states of new born targets

x̃
(p)
k ∼ p

(X)
k (·|Zk) , p = L

(X)
k−1 + 1, . . . , L

(X)
k−1 + J

(X)
k (21)

with corresponding weights

ω̃
(p)
k|k−1 =

γ
(X)
k

(
x̃

(p)
k

)

p
(X)
k

(
x̃

(p)
k |Zk

) (22)

As we assume that the state transition of the clutter is statistically independent of that of the
target, the same operations can be performed on the particle set of clutter states. Therefore, for clutter
state prediction, we sample

c̃
(p)
k ∼ q

(C)
k

(
·|c(p)

k−1, Zk

)
, p = 1, . . . , L

(C)
k−1 (23)

and the predicted weights are

w̃
(p)
k|k−1 =

p
(C)
s

(
c
(p)
k−1

)
f

(C)
k|k−1

(
c̃
(p)
k |c(p)

k−1

)

q
(C)
k

(
c̃
(p)
k |c(p)

k−1, Zk

) w
(p)
k−1 (24)

Then we sample the states of new formed clutters

c̃
(p)
k ∼ p

(C)
k (·|Zk) , p = L

(C)
k−1 + 1, . . . , L

(C)
k−1 + J

(C)
k (25)

with corresponding weights

w̃
(p)
k|k−1 =

γ
(C)
k

(
c̃
(p)
k

)

p
(C)
k

(
c̃
(p)
k |Zk

) (26)

Step 2 Update
We follow Eqs. (13), (14) and (15) to calculate the likelihood of a measurement to target states

and clutter states as follows.

ψ
(X)
k

(
zi
k

)
=

L
(X)
k−1+J

(X)
k∑

p=1

pd

(
x̃

(p)
k

)
h(X)

(
zi
k|x̃(p)

k

)
ω̃

(p)
k|k−1 (27)

ψ
(C)
k

(
zi
k

)
=

L
(C)
k−1+J

(C)
k∑

p=1

h(C)
(
zi
k|c̃(p)

k

)
w̃

(p)
k|k−1 (28)



128 Zhu, Long, and An

Then the coupled likelihood function is the sum of the above likelihoods.

ψk

(
zi
k

)
= ψ

(X)
k

(
zi
k

)
+ ψ

(C)
k

(
zi
k

)
(29)

For target state update, we have

ω̃
(p)
k|k =




(
1− pd

(
x̃

(p)
k

))
+

NZ
k∑

i=1

pd

(
x̃

(p)
k

)
h(X)

(
zi
k|x̃(p)

k

)

ψk

(
zi
k

)

 ω̃

(p)
k|k−1 (30)

and for clutter state update

w̃
(p)
k|k =




NZ
k∑

i=1

h(C)
(
zi
k|c̃(p)

k

)

ψk

(
zi
k

)

 w̃

(p)
k|k−1 (31)

Step 3 Smoothing
For target state smoothing, based on the cached posterior PHD intensity of the recent time steps

{x̃(p)
t , ω̃

(p)
t|t }

L
(X)
t

p=1 , t = k −R, . . . , k, the backward smoothing is performed as follows.

µ
(q)
t+1|t = γ

(X)
t+1

(
x̃

(q)
t+1

)
+

L
(X)
t∑

p=1

p(X)
s

(
x̃

(p)
t

)
f

(X)
t+1|t

(
x̃

(q)
t+1|x̃(p)

t

)
ω̃

(p)
t|t (32)

ω
(p)
t|k =


1− p(X)

s (x̃(p)
t ) + p(X)

s

(
x̃

(p)
t

) L
(X)
t+1∑

q=1

f
(X)
t+1|t

(
x̃

(q)
t+1|x̃(p)

t

)

µ
(q)
t+1|t

ω̃
(q)
t+1|k


 ω̃

(p)
t|t , p = 1, . . . , L

(X)
t (33)

Given the updated particle set of recent several time steps {c̃(p)
t , w̃

(p)
t|t }

L
(C)
t

p=1 , t = k − R, . . . , k, the
smoothing is performed in a similar way.

ν
(q)
t+1|t = γ

(C)
t+1

(
c̃
(q)
t+1

)
+

L
(C)
t∑

p=1

p(C)
s

(
c̃
(p)
t

)
f

(C)
t+1|t

(
c̃
(q)
t+1|c̃(p)

t

)
w̃

(p)
t|t (34)

w
(p)
t|k =


1− p(C)

s

(
c̃
(p)
t

)
+ p(C)

s

(
c̃
(p)
t

) L
(C)
t+1∑

q=1

f
(C)
t+1|t

(
c̃
(q)
t+1|c̃(p)

t

)

ν
(q)
t+1|t

w̃
(q)
t+1|k


 w̃

(p)
t|t , p = 1, . . . , L

(C)
t (35)

Step 4 Resampling
Resampling algorithm in [13] can be applied directly on the particle set for target

{x̃(p)
k , ω̃

(p)
k }L

(X)
k−1+J

(X)
k

p=1 and the particle set for clutter {c̃(p)
k , w̃

(p)
k }L

(C)
k−1+J

(C)
k

p=1 to form the prior particle set

{x(p)
k , ω

(p)
k }L

(X)
k

p=1 and {c(p)
k , w

(p)
k }L

(C)
k

p=1 for the next time step.
Step 5 State Estimation

Postponed estimation is performed on {x(p)
k−R|k, ω

(p)
k−R|k}

L
(X)
k−R|k

p=1 ; therefore, the estimated number of
targets is

N̂
(X)
k−R|k =

L
(X)
k−R|k∑

p=1

ω
(p)
k−R|k (36)

The particles x
(p)
k−R|k are clustered into several groups, and then the expected a posteriori (EAP)

estimation is done as in the previous work [3, 7].
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5. EXPERIMENT RESULTS

The single target state vector xk = [x̃T
k , θk]T consists of motion state vector x̃k = [uk, u̇k, vk, v̇k]T and

the turn rate θk. On the other hand, the clutter state vector is similar to the target state and denoted
as ck = [c̃T

k , ϑk]T . However, only positions of both the targets and clutters can be acquired in the
measurements. We assume that the single target states and clutter states follow the same coordinated
turn model with different parameters.

{
x̃k = F (θk−1)x̃k−1 + Gnk−1

θk = θk−1 + ∆θk−1
(37)

{
c̃k = F (ϑk−1)c̃k−1 + Gnk−1

ϑk = ϑk−1 + ∆ϑk−1
(38)

where

F (ω) =




1
sinω∆t

ω
0 −1− cosω∆t

ω
0 cosω∆t 0 − sinω∆t

0
1− cosω∆t

ω
1

sinω∆t

ω
0 sinω∆t 0 cosω∆t




, G =




∆t2

2
∆t
0
0

0
0

∆t2

2
∆t




(39)

and ∆t is the time interval between the consecutive frames. nk−1 ∼ N (·|0, σ2
nI) is the random generated

process noise vector. ∆θk−1 ∼ N (·|0, σ2
θ) and ∆ϑk−1 ∼ N (·|0, σ2

ϑ) model the vibration on the turn rate
of target state and clutter state, respectively.

Table 1 shows the details on the initial parameters set for real targets in the simulation. All the
targets persist till the end of the 200 frames scenario. The track truth of all the targets are shown in
Fig. 2. Moving objects that have the estimated velocity of [1.0, 10.0] pixel/s are assumed to be targets
of interest. Those potential objects with less than 1 pixel/s velocity are regarded as the static clutter.
∆t = 0.04 s is set for 25 Hz frame rate sensors. Probability of target detection is pd = 0.98. Survival
probabilities are p

(X)
s = 0.99 and p

(C)
s = 0.99. The motion models are set to σθ = σϑ = 0.1π/180 rad/s,

and σn = 0.1.

Table 1. Initial parameters of the targets in the test scenario.

target id start frame u0 u̇0 v0 v̇0 θ0

1 10 20.0 7.5 20.0 6.0 0.025
2 15 110.0 −3.0 30.0 9.0 −0.05
3 20 40.0 6.0 50.0 7.0 −0.05
4 20 50.0 6.0 90.0 −7.0 −0.05
5 30 50.0 8.0 115.0 −5.0 −0.1

For tracking performance evaluation, 100 Monte Carlo trials are tested for the PHD filter with
known clutter density, the PHD filter with clutter estimator, the PHD smoother with known clutter
density and the proposed PHD smoother with clutter estimator respectively on the same scenario. The
optimal subpattern assignment (OPSA) metric (with cut distance c = 10 and order p = 2) is adopted
to measure the difference between estimates and real targets [28].

The average of OSPA values is presented in Fig. 3 for the tracking performance comparison. We
see that the PHD filter with clutter estimator is slightly worse than the PHD filter with known clutter
density for the miss of correct prior parameters. The same situation is observed in the smoother pairs.
There is no doubt that the PHD smoother with known clutter density will reach the best tracking
performance. However, we see that the performance degradation affected by the clutter modeling is
significantly reduced in the PHD smoother version. In other words, we can achieve a better tracking
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Figure 2. Track truth.
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Figure 3. Tracking performance comparison between the PHD filters and the PHD smoothers.

performance by adding the backward smoothing step to compensate the degradation caused by the
uncertain parameters in the clutter model.

The above experiment results are tested by the simulation with measurements generated by
clutters following the ideal Poisson distribution. However, when we extract candidate measurements by
performing segmentation on the raw data received from a real sensor (e.g., infrared imaging sensor), a
portion of the measurements may always appear in several regions due to the heavy clutters. Therefore,
in the following, we evaluate the tracking performance based on a more complicated scenario. About
half of the simulated measurements are generated around fixed positions, and only the other half follows
the ideal Poisson distribution. In this way, we generate a testing scenario approximating to the real
measurement set observed in a practical tracking system.

Figure 4 shows the cumulative estimation results over the whole 200 frames. We see that the
standard PHD smoother with known parameter gives false alarms around fixed clutters due to its
sensitivity to the current measurement set. However, in Fig. 4(b), the fixed false alarm problem
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Figure 4. Cumulative estimate results illustration. (a) PHD smoother with known parameter. (b)
PHD smoother with clutter estimator.
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Figure 5. Tracking performance comparison between the PHD smoothers.

is apparently improved. Furthermore, we evaluate the tracking performance of an improved PHD
smoother with the parameter estimation method described in Section 2. Length of the sliding window
for estimating parameter λ and distribution c(·) is set as L = 50. The averaged OSPA error comparison
is presented in Fig. 5. When the uniform spatial distribution rule of clutter generated measurements
is violated, tracking performance of the standard PHD smoother with known parameter degrades
significantly. Although the parameter estimation method can solve false alarm problem to a certain
extent, the proposed PHD smoother with clutter estimator further improves the performance as well as
the robustness of a practical tracking algorithm.
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6. CONCLUSION

We propose a PHD smoothing scheme integrated with unknown clutter parameter estimation under
prior clutter model. Except for the coupled update step, the prediction and smoothing of the target
state and the clutter state are performed separately based on the assumption that the state transition
processes are statistically independent of each other. Experiment results validate the effectiveness of the
proposed PHD smoother under measurement model with unknown clutter parameters. A fully coupled
PHD smoother with consideration for clutter spawn targets and unknown clutter parameter estimator
will be studied in further research. Future work includes PHD type filter/smoother with clutter model
shift detection ability, which will be compatible for both indeterminate clutter model with unknown
parameters.

REFERENCES

1. Mahler, R., Statistical Multisource-Multitarget Information Fusion, Artech House, Norwood, MA,
2007.

2. Qiu, C., Z. Zhang, H. Lu, and H. Luo, “A survey of motion-based multitarget tracking methods,”
Progress In Electromagnetics Research B , Vol. 62, 195–223, 2015.

3. Mahler, R., “Multi-target Bayes filtering via first-order multi-target moments,” IEEE Transactions
on Aerospace and Electronic Systems, Vol. 39, No. 4, 1152–1178, 2003.

4. Mahler, R., “PHD filters of higher order in target number,” IEEE Transactions on Aerospace and
Electronic Systems, Vol. 43, No. 3, 1523–1543, 2007.

5. Qiu, C., Z. Zhang, H. Lu, and Y. Wu, “Amplitude-aided CPHD filter for multitarget tracking in
infrared images,” Progress In Electromagnetics Research B , Vol. 61, 211–224, 2014.

6. Vo, B. T., B. N. Vo, and A. Cantoni, “The cardinality balanced multitarget multi-Bernoulli filter
and its implementations,” IEEE Transactions on Signal Processing, Vol. 57, No. 2, 409–423, 2009.

7. Vo, B. N., S. Singh, and A. Doucet, “Sequential Monte Carlo methods for multitarget filtering
with random finite sets,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 41, No. 4,
1224–1245, 2005.

8. Zajic, T. and R. Mahler, “Particle-systems implementation of the PHD multitarget-tracking filter,”
Proceedings of SPIE — The International Society for Optical Engineering, 291–299, Maspalomas,
Spain, 2003.

9. Hong, S., L. Wang, Z. Shi, and K. Chen, “Simplified particle PHD filter for multiple-target tracking:
algorithm and architecture,” Progress In Electromagnetics Research, Vol. 120, 481–498, 2011.

10. Vo, B. N. and W. K. Ma, “The Gaussian mixture probability hypothesis density filter,” IEEE
Transactions on Signal Processing, Vol. 54, No. 11, 4091–4104, 2006.

11. Gong, X., Z. Xiao, and J. Xu, “Novel multi-target tracking algorithm for automotive radar,”
Progress In Electromagnetics Research C , Vol. 62, 35–42, 2016.

12. Mahler, R., B. N. Vo, and B. T. Vo, “The forward-backward probability hypothesis density
smoother,” Information Fusion, Vol. 48, No. 1, 1–8, 2011.

13. Mahler, R., B. T. Vo, and B. N. Vo, “Forward-backward probability hypothesis density smoothing,”
IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, No. 1, 707–728, 2012.

14. Vo, B. N., B. T. Vo, and R. Mahler, “A closed form solution to the probability hypothesis density
smoother,” Proceedings of IEEE International Conference on Information Fusion, 1–8, Edinburgh,
UK, 2010.

15. Vo, B. N., B. T. Vo, and R. Mahler, “Closed-form solutions to forward-backward smoothing,” IEEE
Transactions on Signal Processing, Vol. 60, No. 1, 2–17, 2011.

16. Nadarajah, N., T. Kirubarajan, T. Lang, M. Mcdonald, and K. Punithakumar, “Multitarget
tracking using probability hypothesis density smoothing,” IEEE Transactions on Aerospace and
Electronic Systems, Vol. 47, No. 4, 2344–2360, 2011.

17. Nagappa, S. and D. E. Clark, “Fast sequential Monte Carlo PHD smoothing,” Proceedings of IEEE
International Conference on Information Fusion, 1–7, Chicago, USA, 2011.



Progress In Electromagnetics Research C, Vol. 82, 2018 133

18. Wong, S., B. T. Vo, and F. Papi, “Bernoulli forward-backward smoothing for track-before-detect,”
IEEE Signal Processing Letters, Vol. 21, No. 6, 727–731, 2014.

19. Chen, X., R. Tharmarasa, M. Pelletier, and T. Kirubarajan, “Integrated clutter estimation and
target tracking using poisson point processes,” IEEE Transactions on Aerospace and Electronic
Systems, Vol. 48, No. 2, 1210–1235, 2009.

20. Chen, X., R. Tharmarasa, T. Kirubarajan, and M. Pelletier, “Online clutter estimation using
a Gaussian kernel density estimator for target tracking,” Proceedings of IEEE International
Conference on Information Fusion, 1–9, Chicago, USA, 2011.

21. Chen, X., R. Tharmarasa, T. Kirubarajan, and M. Mcdonald, “Online clutter estimation using
a Gaussian kernel density estimator for multitarget tracking,” IET Radar Sonar and Navigation,
Vol. 9, No. 1, 1–9, 2015.

22. Ikoma, N. and S. Godsill, “Extended object tracking with unknown association, missing
observations, and clutter using particle filters,” Proceedings of IEEE Workshop on Statistical Signal
Processing, 502–505, St. Louis, USA, 2003.

23. Kim, W. C., D. Musicki, T. L. Song, and J. S. Bae, “A multi scan clutter density estimator,”
Proceedings of IEEE International Conference on Information Fusion, 707–713, Istanbul, Turkey,
2013.

24. Mahler, R., “CPHD and PHD filters for unknown backgrounds II: Multitarget filtering in dynamic
clutter,” Proceedings of International Society for Optics and Photonics In Sensors and Systems for
Space Applications III, Vol. 7330, 73300L, Orlando, Florida, USA, 2009.

25. Feng, L., C. Han, and W. Liu, “Estimating unknown clutter intensity for PHD filter,” IEEE
Transactions on Aerospace and Electronic Systems, Vol. 46, No. 4, 2066–2078, 2010.

26. Li, C., Z. Jiang, B. Li, and X. Zhou, “Gaussian mixture PHD smoothing filter in unknown clutter,”
Journal of Xidian University , Vol. 4, 98–104, 2015.

27. Shi, Y. F., S. Y. Chong, and T. L. Song, “Integrated particle smoothing for target tracking in
clutter,” IET Radar, Sonar & Navigation, Vol. 11, No. 4, 551–562, 2016.

28. Schuhmacher, D., B. T. Vo, and B. N. Vo, “A Consistent metric for performance evaluation of
multi-object filters,” IEEE Transactions on Signal Processing, Vol. 56, No. 8, 3447–3457, 2008.


