Vol. 80
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-01-16
Fast h -Waves in Double Comb Infinite Arrays
By
Progress In Electromagnetics Research C, Vol. 80, 119-129, 2018
Abstract
А rigorous approach to study the fast H-waves which propagate across an infinite double comb array (IDCA) is proposed. It is based on the Floquet theorem combined with the advanced moment method (Galerkin) scheme in which the basis explicitly satisfies the edge conditions at the rectangular wedge. An exhaustive analysis of the regular and singular modes of the IDCA is made. Normalized critical wave numbers and modal fields are investigated in terms of geometrical parameters. Coupling effects between different IDCA modes are found. For the singular modes a new analytical formula for the critical normalized wave numbers is obtained.
Citation
Alexander Svezhentsev, Vladimir Miroshnichenko, and Guy Vandenbosch, "Fast h -Waves in Double Comb Infinite Arrays," Progress In Electromagnetics Research C, Vol. 80, 119-129, 2018.
doi:10.2528/PIERC17091406
References

1. Srivastava, V., "THz vacuum microelectronic devices," J. Phys. Conf. Ser., Vol. 114, No. 1, 1-10, 2008.

2. Ives, V. R. L., "Microfabrication of high-frequency vacuum elctron devices," IEEE Trans. Plasma Sci., Vol. 32, No. 3, 1277-1291, 2004.
doi:10.1109/TPS.2004.827595

3. Hou, Y., J. Xu, H.-R. Yin, Y.-Y. Wei, L.-N. Yue, G. Zhao, and Y.-B. Gong, "Equivalent circuit analysis of ridge-loaded folded-waveguide slow-wave structures for millimeter-wave travelling-wave tubes," Progress In Electromagnetics Research, Vol. 129, 215-229, 2012.
doi:10.2528/PIER12042602

4. Hou, Y., J. Xu, S. Wang, Z.-G. Lu, Y.-Y. Wei, and Y.-B. Gong, "Study of high efficiency novel folded waveguide traveling-wave tube with sheet electron beam," Progress In Electromagnetics Research, Vol. 141, 431-441, 2013.
doi:10.2528/PIER13060505

5. Liu, Y., J. Xu, Y.-Y. Wei, X. Xu, F. Shen, M. Huang, T. Tang, W.-X. Wang, Y.-B. Gong, and J. Feng, "Design of a V-band high-power sheet-beam coupled-cavity traveling-wave tube," Progress In Electromagnetics Research, Vol. 123, 31-45, 2012.
doi:10.2528/PIER11092906

6. Kesari, V. and J. P. Keshari, "Analysis of a circular waveguide loaded with dielectric and metal discs," Progress In Electromagnetics Research, Vol. 111, 253-269, 2011.
doi:10.2528/PIER10110207

7. Liu, S., J. Chen, S. Yu, et al. "The study of diffraction radiation oscillation," International Journal of Infrared and Millimeter Waves, Vol. 8, No. 8, 885-900, 1987.
doi:10.1007/BF01010726

8. Korneenkov, V. K., V. S. Miroshnichenko, and A. A. Shmat’ko, "Output characteristics of a diffraction radiation generator in the autonomous and nonautonomous modes," Radiophysics and Quantum Electronics, Vol. 34, No. 3, 251-257, 1991.
doi:10.1007/BF01066508

9. Belous, O. I., A. I. Fisun, A. A. Kirilenko, et al. "Research on orotron oscillator with dispersive open resonant system," International Journal of Infrared and Millimeter Waves, Vol. 18, No. 2, 445-461, 1997.
doi:10.1007/BF02677932

10. Kovalyov, I. O. and V. S. Miroshnichenko, "Frequency tuning range of diffraction radiation oscillator with periodical double comb," Telecommunication and Radio Engineering, Vol. 75, No. 14, 1299-1312, 2016.
doi:10.1615/TelecomRadEng.v75.i14.60

11. Zargano, G. F., V. P. Lyapin, V. S. Mikhalevskiy, et al. Complex Section Waveguides, Radio I Svyaz, Moscow, 1986.

12. Svezhentsev, A. Ye., "Full-wave, edge-accounting calculation of losses in rectangular-groove waveguides," Microwave and Optical Technology Letters, Vol. 10, No. 1, 52-56, 1995.
doi:10.1002/mop.4650100117

13. Svezhentsev, A. Ye., "Full wave edge accounting analysis of waves in infinite array of stub-loaded rectangular waveguides," International Journal of Infrared and Millimeter Waves, Vol. 29, No. 8, 724-740, 2008.
doi:10.1007/s10762-008-9369-2

14. Rozhnev, A. G., N. M. Ryskin, T. A. Karetnikova, G. V. Torgashev, N. I. Sinitsyn, P. D. Shalayev, and A. A. Burtsev, "Studying characteristics of the slow-wave system of the traveling-wave tube with a sheet electron beam," Radiophysics and Quantum Electronics, Vol. 56, No. 1, 8-9, 2014.

15. Svezhentsev, A. Ye., "Waves in an infinite array of groove waveguides," International Conference on Mathematical Methods in Electromagnetic Theory, CD-ROM, Kharkov, Ukraine, 2016.

16. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1971.

17. Melezhik, P. N., A. Y. Poyedinchuk, Y. A. Tuchkin, and V. P. Shestopalov, "Analytical nature of the vibrational mode-coupling phenomenon," Dokl. Akad. Nauk SSSR, Vol. 300, No. 6, 1356-1359, 1988.

18. Svezhentsev, A., "Special points of dispersion equations of metal-dielectric cylindrical waveguides," Dokl. Akad. Nauk URSR, No. 4, 82-87, 1994.

19. Yakovlev, A. B. and G. W. Hanson, "Analysis of mode coupling on guided wave structures using Morse critical points," IEEE Trans. Micr. Theory and Tech., Vol. 46, 966-974, Jul. 1998.