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Fast H-Waves in Double Comb Infinite Arrays

Alexander Ye. Svezhentsev1, *,
Vladimir S. Miroshnichenko1, and Guy A. E. Vandenbosch2

Abstract—A rigorous approach to study the fast H-waves which propagate across an infinite double
comb array (IDCA) is proposed. It is based on the Floquet theorem combined with the advanced
moment method (Galerkin) scheme in which the basis explicitly satisfies the edge conditions at the
rectangular wedge. An exhaustive analysis of the regular and singular modes of the IDCA is made.
Normalized critical wave numbers and modal fields are investigated in terms of geometrical parameters.
Coupling effects between different IDCA modes are found. For the singular modes a new analytical
formula for the critical normalized wave numbers is obtained.

1. INTRODUCTION

Mastering the low and sub mm range remains a vital strategy in vacuum electronics. This concerns
classical electronic devices like travelling wave tube amplifiers, backward wave oscillators, diffraction
radiation oscillators, reflex klystrons, etc. [1–10]. These devices use different principles of interaction
between the electron beam and electromagnetic waves.

In devices like the travelling wave tube amplifier the slow wave propagating along a comb periodical
structure is used. However, other regimes of the comb periodical structure may occur. In particular,
in a diffraction radiation oscillator (DRO) [7–10] fast H-waves propagate across the comb periodical
structure. In this case the angle between the wave direction and the electron beam is 90◦. To provide
the DRO with a high Q-factor and to ensure an effective energy exchange between the electron beam
and the open resonator field, the knowledge of the exact critical wave numbers and the field structure
of the H-wave propagating across the double comb periodical structure is crucial [10].

In this paper, for the first time, the fast H-wave propagating in a double comb array (DCA)
is analyzed. First, the large finite DCA is approximated by an infinite array (ICDA). Second, the
periodical structure is solved with a method of moments procedure. A combination of the Floquet
theorem and the Galerkin scheme is used. The basis functions explicitly satisfy the edge conditions
at the rectangular wedge. The so-called Sub Domain Edge (SDE) method is used. This technique is
faster and much more stable than pure numerical solutions like FEM or FDTD. The SDE method was
already applied to study wave propagation in complex shape waveguides, slot and strip lines, and groove
waveguides [11, 12]. The method was extended to study waves in single infinite periodic arrays with a
groove of complex cross section [13]. Recently it was used to study slow waves along a double comb
array placed in a rectangular waveguide [14].

The principal mode of the IDCA was very preliminary studied in [15]. In this paper, an exhaustive
analysis of the IDCA is given, not only of the principal H-mode but also of the higher order H-modes.
The analysis is performed in terms of geometrical parameters, full field distributions are studied, and
new coupling effects are found. It is shown that the modal spectrum contains both regular and singular
waves.
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2. PROBLEM FORMULATION AND SOLUTION

Consider the IDCA in Fig. 1(a), H-waves that propagate in z-direction have a dependence on z and
time given by e−i(hz−ωt), where h is the propagation constant and ω the angular frequency. Since
the structure is periodic with period L the analysis of the whole structure is reduced to the analysis
of a single unit cell, see Fig. 1(b). Taking into account the symmetry, electric and magnetic walls
can be applied in the symmetry planes (see dotted lines OB and BC). The dimensions are defined as
OF = AE = c, AB = g, BC = L/2, OA = b, OB = a/2 = g + b. Within the unit cell we introduce two
subdomains: g < x < g + b, 0 < y < c (1) and 0 < x < g, 0 < y < L/2 (2). The selection of electric or
magnetic wall boundaries is defined as follows:

- wall BC: electric wall corresponds to g1 = 0, magnetic to g1 = 1,
- wall OB: electric wall corresponds to g2 = 0, magnetic to g2 = 1.
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Figure 1. The IDCA: (a) isometric and (b) cross-sectional view of unit cell.

The critical wave numbers kc of the H-wave (Hz �= 0, Ez = 0) of the IDCA are found by solving the
two-dimensional Helmholtz equation

d2H(1,2),z

dx2
+
d2H(1,2),z

dy2
+ k2

c ·H(1,2),z = 0, (1)

where k0 and kc are the free space and critical wave numbers and k2
c = k2

0 − h2.
The solution of Eq. (1) in regions 1 and 2 can be presented as a series in eigenfunctions of domains

1 and 2 (taking into account the Floquet theorem) with the coefficients unknown:

H1,z(x, y) =
∞∑

n=0

AnX1n(x)Y1n(y), (2)

H2,z(x, y) =
∞∑

n=0

BnX2n(x)Y2n(y), (3)

where H(1,2),z(x, y) is the z-component of the magnetic field, and An, Bn are unknown coefficients,

X1n(x) = cos [pn(x− g − b)] , X2n(x) = sin [χnx− πg1/2] (4)
Y1n(y) = μ1n cos [αny − πg2/2)] , Y2n(y) = μ2n cos [Δny − πg2/2] (5)

with

αn = π(n+ g2/2)/c, Δn = 2πn/L, p2
n = k2

c − α2
n, χ2

n = k2
c − Δ2

n, μ1n =
√

(2 − δ0αn)/c, (6)

δ0αn =
{

1, if αn = 0
0, if αn �= 0 , μ2n =

√
2/L, k0 = 2π/λ0, kc = 2π/λc, (7)

and λ0, λc the free space and critical wavelengths, respectively.
Note that the functions Xin(x), Yin(y) already satisfy the boundary conditions. The functions

Y1n(y) and Y2n(y) form complete bases over the segments [0, c] and [0, L/2], respectively. These
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functions are normalized by the coefficients μ1n and μ2n, respectively. Quantities pn and χn can be
obtained by substituting Eqs. (4)–(5) into the Helmholtz equation (1) for the Hz components.

The formulas in (2)–(3) are different from the corresponding formulas in [15] since they explicitly
take into account the electric or magnetic walls in the symmetry planes (see Fig. 1(b)), resulting in
Eq. (3) in a summation from 0 to ∞, instead of −∞, ∞ in [15]. These electric and/or magnetic walls
considerably reduce the order of the resulting system of equations and, more importantly, they allow to
split the solution into four independent ones. This is crucial for the categorization of all possible field
solutions and opened the way to a detailed study of the IDCA mode spectrum, including the observation
of the physical peculiarities discussed later.

The first step in obtaining the integral equation consists of satisfying the boundary conditions
which are continuity conditions at x = g, 0 < y < c. Applying the continuity condition for the electric
field y-component

E1,y = E2,y = f(y) (8)

at x = g, 0 < y < c we can express the unknown coefficients An and Bn via the unknown function f(y).
Doing the same for the magnetic field z-component we come to the integral equation

D̃f =

c∫
o

f(y)

{ ∞∑
n=0

[
F1nX1n(g)Y1n(y)Y1n(y′) − F2nX2n(g)Y2n(y)Y2n(y′)

]}
dy = 0, (9)

where
F1n(y) = 1/X ′

1n(g), F2n(y) = 1/X ′
2n(g). (10)

The integral equation (9) is solved using Galerkin’s scheme with basis functions that explicitly satisfy
the edge condition. The solution can be expressed in the form:

f(y) =
NR−1∑
i=0

UiΦi(y), (11)

where Ui are unknown coefficients, NR is the number of basis functions, and

Φi(y) = σ−1(y)ϕi(y); σ(y) =
[
1 − (y/c)2

]1/3 ; ϕi(y) = C
1/6
2i+g2

(y/c) (12)

In Eqs. (11)–(12) σ(y) is the weight function that gives the correct edge behavior near the rectangular
edge and ϕi(y) is a Gegenbauer polynomial [16]. The functions ϕi(y) = C

1/6
2i+g2

(y/c) form a complete
basis over the segment [0, c] with the weigh function σ(y). Note that the parameter g2 enters into
formula (12c) due to the fact that the type of wall at the OB boundary sets the corresponding behavior
(evenness/oddness) for the Ey component with respect to the y = 0 plane (see Fig. 1(b)). Realizing the
Galerkin scheme we come to a system of linear algebraic equations for the unknown coefficients Ui:

NR−1∑
i=0

UiDij = 0, i, j = 0, 1, . . .,NR − 1, (13)

where

Dij =

c∫
0

Φi(y′)D̃[Φj(y)]dy′ =
∞∑

n=0

{F1nX1n(g)ψin(αn)ψjn(αn) − F2nX2n(g)ψin(Δn)ψjn(Δn)} , (14)

ψ(i,j)n(αn)=

c∫
0

Φ(i,j)(y)Y1n(y)dy, ψ(i,j)n(Δn) =

c∫
0

Φ(i,j)(y)Y2n(y)dy. (15)

Note that integrals in Eq. (15) are explicitly calculated via Bessel functions with non integer
index [11, 13, 16]. The resulting dispersion equation has a form:

det [Dij ] = 0, i, j = 0, 1, 2, . . .,NR − 1, (16)
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where matrix elements Di,j can be expressed as:

Di,j =
∞∑

n=0

{
(μ1n)2F̄1nWi(αnc)Wj(αnc) − (μ2n)2F̄2nWi(Δnc)Wj(Δnc)

}
(17)

with

Wi(αnc) = J2i+1/6+g2
(αnc)/(αnc)1/6, Wi(Δnc) = J2i+1/6+g2

(Δnc)/(Δnc)1/6, (18)

F̄1n = cos(pnb)/(pn sin(pnb)), F̄2n = − cos(χ̄ng)/(χ̄n sin(χ̄ng)), χ̄n = χn − πg1/2, (19)

where Jν(z) is a Bessel function. Note that the parameter g2 enters into the index of the Bessel
function (see Eq. (18)) while the parameter g1 enters into the arguments of the trigonometric functions
in Eq. (19).

Thus we obtain the dispersion Equation (16) which incorporates four different (g1/g2) pair values.
It is this fact that allows categorizing the solution into four independent families.

Equation (16) can be solved by Newton’s method to find the critical wave numbers kc. Due to the
fact that the topology is closed kc has to be real. It was numerically found that in order to get a stable
solution for kc with three significant digits, it is sufficient to perform the summations over about three
hundred terms and to take the reduction order of Eq. (16) as NR = 4, equal to the number of basis
functions. The boundary conditions at the boundary between subdomains 1 and 2 are then satisfied
with an accuracy of about 0.1% far from the edge and about 2% near the edge.

The set of H-waves can be subdivided into four different families according to the symmetry planes,
as discussed in detail in Section 4.

3. H-WAVES SPECTRUM

The IDCA cell geometry evolution versus g/a is shown in Fig. 2. First a qualitative analysis of the
IDCA spectrum is given. Classification of the waves within the IDCA is not trivial because the IDCA
spectrum in the cases g/a → 0 and g/a → 0.5 (see Fig. 2) cannot be fully reduced to the spectrum
of H-waves within traditional rectangular (g/a = 0) and plane (g/a = 0.5) waveguides (see Fig. 2),
respectively. In the cases g/a → 0 and g/a → 0.5 (see Fig. 2) there are new wave types, as will be
shown below, which do not occur in the spectrum at g/a = 0 and g/a = 0.5 (see Fig. 2), respectively. For
0 < g/a < 0.5 these additional waves appear as a consequence of the periodicity. The IDCA spectrum
thus consists of regular and singular waves, where the singular waves will disappear at the extremes for
g/a = 0 and g/a = 0.5 (see Fig. 2).

 

 

 g/a = 0 g/a = 0.25

g/a = 0.5

g/a → 0

g/a → 0.5

Figure 2. Cell evolution versus g/a.

It is obvious that at g/a = 0 the IDCA spectrum consists of the regular Hg1,g2
mn (m,n = 0, 1, . . .)

waves of the rectangular waveguide and that at g/a = 0.5 the IDCA spectrum consists of the regular
Hg1,g2

p (p = 0, 1, . . .) waves of the plane waveguide. These waves continue to exist for any g within
the range 0 < g/a < 0.5. For g/a → 0 (see Fig. 2) the waves of the singular array type XHg1,g2

ms
(m, s = 0, 1, . . .) appear and exist further for all 0 < g/a < 0.5 values. Similarly, for g/a → 0.5 the
singular waves of the array type XHg1,g2

ps (p, s = 0, 1, . . .) appear and exist further for all 0 < g/a < 0.5
values. The indices m and p represent the number of half wavelengths in the x direction for the double
cell, i.e., taking into account the symmetry plane at BC with the corresponding wall (see Fig. 1(b)).
The indices n (used further) and s represent the number of half wavelengths in the y direction in the
regions 1 and 2, respectively, for the double cell, i.e., taking into account the symmetry plane at OB
with the corresponding wall. It is reasonable to assume that the critical wave numbers of the regular and
singular waves are continuously transforming when the parameter g/a varies from g/a→ 0 to g/a → 0.5
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(see Fig. 2). For this transformation (or transition) we will use the symbol “↔”. For example, writing
H0,0

40 ↔ XH0,0
01 means that the normalized critical wave number of the regular H0,0

40 (g/a = 0) wave is
continuously transforming to the normalized critical wave number of the XH0,0

01 (g/a → 0.5) wave when
g/a continuously varies from g/a = 0 to g/a → 0.5 (g1 and g2 are both equal to zero).

The quantitative analysis of the IDCA spectrum is based on applying the limits g/a → 0 and
g/a → 0.5 (see Fig. 2) to the formulas (4), respectively. Inserting the extreme case g/a = 0
we obtain the Hg1,g2

mn waves of the rectangular waveguide with normalized critical wave numbers
kca = π

√
m2 + (n/(2c/a))2, where m = 2k + g1, n = 2q + g2, k = 0, 1, . . ., q = 0, 1, . . ..

As mentioned above the singular XHg1,g2
ms ↔ XHg1,g2

ps waves exist in the structure for any
0 < g/a < 0.5 but not in the extreme cases g/a = 0 and g/a = 0.5. Analytical formulas for the
XHg1,g2

ps critical wave numbers can be obtained in the case g/a → 0.5 (see Fig. 2). Inserting this limit
into formula (4b) we obtain

kca = π
√
p2 + 4(s/(L/a))2, (20)

where p = 2k + g1, k = 0, 1, . . ., and s = 0, 1, . . .. Note that the parameter g2 does not enter into
the index s because the region 2 (see Fig. 1(b)) does not contain a side wall at the CD position. This
means that the same s value can occur in different families with corresponding wall in the y = 0 plane.
It is seen that the waves continuously transform, i.e., XHg1,g2

ms ↔ XHg1,g2
ps , when the parameter g/a

varies. This means that the index m can transform to p due to the mode coupling, as will be studied
below. Also note that the formula (20) is an approximation obtained in the case g/a→ 0.5 and in this
approximation the critical wave number does not depend on the groove geometry.

The value s = 0 in Eq. (20) corresponds to the Hg1,g2
p waves of the plane waveguide (g/a = 0.5,

see Fig. 2) with normalized critical wave numbers kca = πp, where p = 2k + g1, k = 0, 1, . . ..
Summarizing, the possible wave transformations that can take place in the IDCA in the range

0 ≤ g/a ≤ 0.5 are: Hg1,g2
mn ↔ Hg1,g2

p (m, p = 0, 1, . . ., n = 0, 1, . . .) for the regular waves,
XHg1,g2

ms ↔ XHg1,g2
ps for the singular waves, Hg1,g2

mn ↔ XHg1,g2
ps for regular ↔ singular, XHg1,g2

ms ↔ Hg1,g2
p

for singular ↔ regular. The regular waves Hg1,g2
mn always exist at both g/a = 0 and for g/a → 0, the

regular waves Hg1,g2
p always exist for both g/a → 0.5 and g/a = 0.5, while the singular waves XHg1,g2

ms ,
XHg1,g2

ps do not exist at the exact points g/a = 0 and g/a = 0.5, respectively.

4. NUMERICAL RESULTS

In case of the family Hz-odd (g1 = 1)/Hz-even (g2 = 0) there is a magnetic wall at BC and an electric
wall at OB (see Fig. 1(b)). The IDCA is configured with c/a = 0.0484, L/a = 0.3876, L/(2c) = 4.004.
Fig. 3, a shows the transitions of the waves Hg1,g2

mn into Hg1,g2
m and XHg1,g2

ps waves versus the parameter
g/a. Note that at g/a→ 0.5 next to the regular waves there are two singular waves: XH1,0

11 and XH1,0
31

which do not belong to the set of waves of the plane waveguide because they are not present at g/a = 0.5.
As seen from Fig. 3, a there is a good agreement for the lowest H1,0

10 ↔ H1,0
1 wave (see curve 1) between

the proposed SDE solution (solid line 1) and calculations with the commercial solver CST Microwave
Studio (rectangular dots). The distribution of the Hz-component for the principal H1,0

10 ↔ H1,0
1 wave

in the cross-section is given in Fig. 3(b). Note that the lines Hz = const coincide with the force lines
of the electrical field. A schematic view of the transversal electric and magnetic field structure of the
H1,0

10 ↔ H1,0
1 wave is presented in Fig. 3(c). As an example of the field transition Figs. 4(a), (b) give

the Hz-component distribution for the wave H1,0
70 ↔ XH1,0

11 in both extreme cases: g/a = 0.01 and
g/a = 0.49 (see curve 4 in Fig. 3(a)). Note that the wave XH1,0

11 does not exist at g/a = 0.5.
It is observed in Fig. 3 that curves 3 and 4 approach each other and then recede from each other.

The corresponding region is marked by a circle. This effect is known as the modes mutual coupling
phenomenon. This effect was observed already for modes in open resonators [17], for slow waves in
cylindrical [18] and planar [19] slot and strip lines, and in open waveguides of complex cross-section [13].
The plots in Fig. 3, a reveal a lot of such coupling effects. Note that in the coupling region the Morse
critical point is observed [13, 17–19]. A qualitative picture of the mutual coupling phenomenon in the



124 Svezhentsev, Miroshnichenko, and Vandenbosch

0

5

10

15

20

25

30

1

2

3

4

5

(a) (b) (c)

0.1 0.2 0.3 0.4
g/a

k 
 a

 (
g 

 =
 1

, g
  =

 0
)

1
2

c

Figure 3. (a) Normalized critical wave number kca versus g/a. c/a = 0.0484, L/a = 0.3876,
L/(2c) = 4.004. The waves transition are: 1 — H1,0

10 ↔ H1,0
1 (solid — SDE method, rectangles (4

dots) — CST), 2 — H1,0
30 ↔ H1,0

3 , 3 — H1,0
50 ↔ H1,0

5 , 4 — H1,0
70 ↔ XH1,0

11 , 5 — H1,0
90 ↔ XH1,0

31 . (b) —
lines of Hz = const for the H1,0

10 ↔ H1,0
1 wave. g/a = 0.25, c/a = 0.0484, L/a = 0.3876, L/(2c) = 4.004.

(c) transversal field structure of the dominant H1,0
10 ↔ H1,0

1 -wave. E-field in solid line, H-field in dashed
line.

(a) (b)

Figure 4. Field transformation (Hz-component) H1,0
70 ↔ XH1,0

11 (curve 4, Fig. 2); c/a = 0.0484,
L/a = 0.3876, L/(2c) = 4.004; (a) g/a = 0.01, (b) g/a = 0.49.
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Figure 5. Schematic qualitative picture of the mutual coupling phenomenon.
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coupling region of Fig. 3, a is depicted in Fig. 5. The curves 3 and 4 describe the normalized critical
wave number behavior versus g/a. Formally, the points 1 and 4 belong to the same curve 3 and the
points 2 and 3 belong to the same curve 4. However, the field distributions in the points 1 and 3 are
similar and the field distributions in the points 2 and 4 are similar. Results which confirm the mode
coupling effect are presented in Fig. 6. The field profiles depicted in Fig. 6(a) and Fig. 6(b) correspond
to the same curve 4 of Fig. 3(a) and the field profiles depicted in Fig. 6(c) and Fig. 6(d) correspond to
the same curve 3 of Fig. 3(a). It is seen that the field profiles in Fig. 6(a) and Fig. 6(d) are similar.
The same is observed in Fig. 6(c) and Fig. 6(b).

(a) (b)

(c) (d)

Figure 6. Mode coupling in the IDCA. The field structure (Hz-component) for curves 3–4 (see Fig. 2),
c/a = 0.0484, L/a = 0.3876. (a) g/a = 0.25, kca = 18.2241. (b) g/a = 0.35, kca = 17.3363. (c)
g/a = 0.25, kca = 15.2497. (d) g/a = 0.35, kca = 13.9867.

Note that a specific mode can show a coupling effect several times while g/a varies. This explains
the need for different indexes (mn,ms, p, ps) in the extreme cases: in the rectangular waveguide (at
g/a = 0 for the regular waves Hg1,g2

mn and for g/a→ 0 for the singular waves XHg1,g2
ms ) and in the plane

waveguide (at g/a = 0.5 for regular waves Hg1,g2
p and for g/a→ 0.5 for the singular waves XHg1,g2

ps ).
The results for the family Hz-even (g1 = 0)/Hz-odd (g2 = 1) versus g/a are given in Fig. 7(a).

The lowest wave in Fig. 7(a) is the singular wave XH0,1
01 ↔ XH0,1

01 which holds its indexes over the
whole range 0 < g/a < 0.5. The field structure of the Hz-component and the schematic transversal
field structure of this wave are shown in Fig. 7(b) and Fig. 7(c), respectively. It is interesting to note
that the Hz field of the XH0,1

01 ↔ XH0,1
01 wave in Fig. 7(b) is mostly concentrated in region 2. When

g/a→ 0.5 the normalized critical number given by Eq. (20) with p = 0, s = 1 leads to
kca = 2π/(L/a) ⇒ λc = L. (21)
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Figure 7. (a) Normalized critical wave number kca of the IDCA versus g/a. c/a = 0.0484,
L/a = 0.3876, L/(2c) = 4.004. The wave transitions: 1 — XH0,1

01 ↔ XH0,1
01 , 2 — H0,1

21 ↔ XH0,1
21 , 3 —

H0,1
41 ↔ XH0,1

41 , 4 — H0,1
61 ↔ XH0,1

61 . (b) The field structure (Hz-component) of the XH0,1
01 ↔ XH0,1

01
wave. g/a = 0.25. c/a = 0.0484, L/a = 0.3876, L/(2c) = 4.004. (c) Transversal field structure of
dominant XH0,1

01 ↔ XH0,1
01 -wave. The E-field is shown in solid line, the H-field in dashed line.

Note that curve 1 in Fig. 7(a) for g/a → 0.5 tends to the value determined by Eq. (21). It is seen
from Eq. (21) that the normalized critical wave number of the XH0,1

01 ↔ XH0,1
01 wave for g/a → 0.5

depends on L/a only. Its value in case L/a > 2 can be even smaller than the normalized critical wave
number of the H0,1

10 ↔ H0,1
1 wave, which is equal to π.

Thus the critical wavelength of the lowest singular wave XH0,1
01 ↔ XH0,1

01 in the case g/a → 0.5
is equal to the structure period L, and in the case L > 2a the critical wavelength is bigger than 2a.
Formula (21) is a fundamental result. Since Eq. (21) does not contain any groove parameter, the lowest
singular wave exists in the IDCA even with grooves of arbitrary shape.

For the XH0,1
01 ↔ XH0,1

01 wave to be the lowest H-wave it is necessary to have L > 2a. To study
this situation we discuss an IDCA with geometry: L > 2a, c → L/2 and g → a/2. In this case
the IDCA can be treated as a rare array with small internal grooves. Some of the possible IDCAs,
namely with rectangular and triangular internal grooves (inclusions), are presented in Figs. 8(a), (b).
For the IDCA parameters L/a = 2.4, c/a = 1.1 and g/a = 0.4, the XH0,1

01 ↔ XH0,1
01 wave in the case

of a rectangular groove gives kca = 2.527 and kca = 2.523 with the SDE approach and with CST,
respectively. For the triangle-shaped groove CST gives kca = 2.455. The approximate formula (21)
gives the value kca = 2.617. The schematic transversal field structure in the cross-section for the IDCA
with the rectangular internal grooves is given in Figs. 8(b).

(a) (b) (c)

Figure 8. The IDCA with small internal (a) rectangular and (b) triangular grooves in the case L > 2a.
(c) transversal field structure of the dominant XH0,1

01 ↔ XH0,1
01 -wave. E-field in solid line, H-field in

dashed line.

Note that the calculation time for one point is a couple of seconds for the SDE technique, but a
couple of minutes for CST.

For the family Hz-even (g1 = 0)/Hz-even (g2 = 0) the wave transition from the rectangular
waveguide to the plane waveguide is presented in Fig. 9(a). For the chosen parameters the lowest



Progress In Electromagnetics Research C, Vol. 80, 2018 127

(a) (b) (c)

Figure 9. (a) Normalized kca versus g/a. c/a = 0.0484, L/a = 0.3876, L/(2c) = 4.004. The wave
transitions are: 1 — H0,0

20 ↔ H0,0
2 , 2 — XH0,0

30 ↔ H0,0
4 , 3 — H0,0

40 ↔ XH0,0
01 , 4 — H0,0

60 ↔ XH0,0
21 , 5

— H0,0
80 ↔ H0,0

6 . (b) Field structure (Hz-component) of the XH0,0
01 wave. g/a = 0.01. c/a = 0.0484,

L/a = 0.3876, L/(2c) = 4.004. (c) Field structure of the XH0,0
01 -wave. E-field in solid line, H-field in

dashed line.
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Figure 10. Normallized kca of the IDCA versus g/a. c/a = 0.0484, L/a = 0.3876, L/(2c) = 4.004. The
wave transitions: 1 — H1,1

11 ↔ XH1,1
11 , 2 — H1,1

31 ↔ XH1,1
31 , 3 — H1,1

51 ↔ XH1,1
51 , 4 — H1,1

71 ↔ XH1,1
71 .

wave is H0,0
20 ↔ H0,0

2 (see curve 1). The singular wave XH0,0
30 ↔ H0,0

4 (see curve 2) has no limit for
g/a = 0 (does not exist) and has a limit for g/a→ 0.5. Also note the singular waves: XH0,0

01 and XH0,0
21

have no limit at g/a → 0.5 and the wave XH0,0
30 does not exist in the structure at g/a = 0. Note that

in the case g/a→ 0 the IDCA becomes a sequence of resonators of rectangular shape coupled by slots.
Therefore there are so-called slotted modes in the IDCA which dissapear when g/a→ 0.

It is seen from Fig. 9 that curve 3 corresponds to the singular wave H0,0
40 ↔ XH0,0

01 when g/a→ 0.5.
The field distribution of the XH0,0

01 wave (Hz-component) and its schematic transversal field structure
are shown in Fig. 9(b) and Fig. 9(c), respectively. This wave is similar to the previously discussedXH0,1

01
wave because they both have the same critical wave number limiting value described by formula (21).
However, the XH0,0

01 wave belongs to another family having an electric wall in the y = 0 plane instead
of a magnetic wall (see Fig. 1(b)). It is seen from Fig. 9(b) that the field level in region 2 prevails over
the field level in region 1. A lot of coupling effects can be observed in Fig. 9(a). Due to these effects



128 Svezhentsev, Miroshnichenko, and Vandenbosch

the wave indices vary as it takes place with the transition H0,0
80 ↔ H0,0

6 .
The results for the family Hz-odd (g1 = 1)/Hz-odd (g2 = 1) are available in Fig. 10. It is seen that

the regular waves of the rectangular waveguide transform to the singular waves, which do not exist
in the plane waveguide. The Hz field of the H1,1

11 ↔ XH1,1
11 wave is similar to the Hz field of the

wave XH0,1
01 ↔ XH0,1

01 and H0,0
40 ↔ XH0,0

01 in the sense that it is mostly concentrated in the region
2. The normalized critical number of the H1,1

11 ↔ XH1,1
11 -wave at g/a → 0.5 can be obtained using

the formula (20) with p = 1, s = 1. For the chosen value L/a = 0.3876 the normalized critical wave
numbers of the XH1,1

11 , XH0,1
01 , and XH0,0

01 waves in the case g/a→ 0.5 are close to each other, namely:
kca = 16.51 and kca = 16.21 (this is the same for the XH0,1

01 and XH0,0
01 waves), respectively.

5. CONCLUSION

In this paper the fast H-waves which propagate across an infinite double comb array have been studied.
A rigorous SDE approach combined with a Galerkin scheme in which the basis functions explicitly
satisfy the edge condition at the rectangular edge were used. The approach prevails over others like
FEM and FDTD since it is faster and considerably more stable. Four independent wave families have
been considered, and a terminology of regular and singular waves was introduced. It was shown that
there are a lot of mode coupling effects in the IDCA. It was also shown that the lowest singular wave of
the IDCA with small grooves has a critical wavelength equal to the IDCA period, which means that for
the H-wave in the plane waveguide with periodical inclusions it can be larger than 2a, where a is the
transverse size of the plane waveguide. This was demonstrated for the plane waveguide with rectangular
and triangular internal grooves. Therefore singular waves exist in an IDCA with grooves of arbitrary
shapes. The results can be used in the design of diffraction radiation oscillators.
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