Vol. 83
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-04-19
Input Impedance of an Aperture Over a Lossy Half-Space: Application to on-Body Antenna Performance at 60 GHz
By
Progress In Electromagnetics Research C, Vol. 83, 161-178, 2018
Abstract
This paper presents a theoretical approach to compare the performance of a directive and a quasi-omnidirectional on-body antennas.Two canonical antennas, namely, a dipole and a rectangular aperture, are considered in the 60 GHz band. We first demonstrate that for this on-body configuration, the classically-defined far-field antenna gain depends on the observation distance. Consequently, we derive results in terms of radiation efficiency and link budget. To do so, the antenna input impedance computation is a preliminary step to normalize the input power to allow a fair comparison between the two antennas. The impedance over a lossy half-plane of an aperture illuminated by a TE10 mode normally polarized is therefore derived into a convenient easy-to-compute formulation, which to authors' best knowledge, is not available in the literature. In terms of link budget, it is obtained that the received power due to an aperture is generally higher than the one due to the dipole in the main lobe direction. A constant difference is observed along the distance, and this difference increases with the aperture width for antennas touching the body. Besides, it is shown that the standard aperture waveguide WR15 exhibits a slightly higher efficiency than a vertical dipole with the same vertical size when being placed at a distance less than 3 mm (i.e., 0.6λ) from the body phantom surface. Above this distance, the dipole and the aperture exhibit similar efficiency in the order of 60%.
Citation
Solofo Razafimahatratra, Julien Sarrazin, Guido Valerio, Francois Sarrazin, Massimiliano Casaletti, Philippe De Doncker, and Aziz Benlarbi-Delai, "Input Impedance of an Aperture Over a Lossy Half-Space: Application to on-Body Antenna Performance at 60 GHz ," Progress In Electromagnetics Research C, Vol. 83, 161-178, 2018.
doi:10.2528/PIERC17090104
References

1. Patel, M. and J. Wang, "Applications, challenges, and prospective in emerging body area networking technologies," IEEE Wirel. Commun., Vol. 17, No. 1, 80-88, 2010.
doi:10.1109/MWC.2010.5416354

2. Yuce, M. R. and J. Khan, Wireless Body Area Networks: Technology, Implementation, and Applications, CRC Press, 2011.

3. Li, H.-B. and K. Y. Yazdandoost, Wireless Body Area Network, River Publishers, 2010.

4. Zhu, N., "Simulation and optimization of energy consumption on wireless sensor networks," Journal of the Institute of Polytechnics Osaka City University, Ser. A Mathematics, Ecole Centrale de Lyon, 2013.

5. Aoyagi, T., M. Kim, and J. Takada, "Characterization for a electrically small antenna in proximity to human body --- Towards Antenna de-embedding in body area network channel modeling," 7th European Conference on Antennas and Propagation, 3421-3422, 2013.

6. Grimm, M. and D. Manteuffel, "On-Body antenna parameters," IEEE Trans. Antennas Propag., Vol. 63, No. 12, 5812-5821, 2015.
doi:10.1109/TAP.2015.2482499

7. Naganawa, J., J. Takada, T. Aoyagi, and M. Kim, "Antenna deembedding in WBAN channel modeling using spherical wave functions," IEEE Trans. Antennas Propag., Vol. 65, No. 3, 1289-1300, 2017.
doi:10.1109/TAP.2017.2655006

8. Boyes, S. J., P. J. Soh, Y. Huang, G. A. E. Vandenbosch, and N. Khiabani, "On-body performance of dual-band textile antennas," IET Microwaves, Antennas Propag., Vol. 6, No. 15, 1696-1703, 2012.
doi:10.1049/iet-map.2012.0469

9. Giddens, H., D. L. Paul, G. S. Hilton, and J. P. McGeehan, "Influence of body proximity on the efficiency of a wearable textile patch antenna," 6th European Conference on Antennas and Propagation (EuCAP), 1353-1357, 2012.

10. Klemm, M., I. Z. Kovacs, G. F. Pedersen, and G. Troster, "Comparison of directional and omni-directional UWB antennas for Wireless Body Area Network applications," 18th Internaitonal Conference on Applied Electromagnetics and Communications (ICECom), 1-4, 2005.

11. Sarrazin, J., et al. "Antenna radiation efficiency considerations in body area networks," 11th EAI International Conference on Body Area Networks, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 10-11, 2016.

12. Razafimahatratra, S., J. Sarrazin, A. Benlarbi-delai, and P. De Doncker, "Horn antenna design for BAN millimeter wave on-body communication," IEEE APS, 204.2, 2014.

13. Chahat, N, G. Valerio, M. Zhadobov, and R. Sauleau, "On-body propagation at 60 GHz," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 1876-1888, 2013.
doi:10.1109/TAP.2013.2242034

14. Alipour, S., F. Parvaresh, H. Ghajari, and F. K. Donald, "Propagation characteristics for a 60 GHz Wireless Body Area Network (WBAN)," Military Communications Conference, 719-723, 2010.

15. Petrillo, L., T. Mavridis, J. Sarrazin, A. Benlarbi-Delai, and P. De Doncker, "Statistical on-body measurement results at 60 GHz," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 400-403, 2015.
doi:10.1109/TAP.2014.2364611

16. Shubair, R. M. and Y. L. Chow, "A closed-form solution of vertical dipole antennas above a dielectric halfspace," IEEE Trans. Antennas Propag., Vol. 41, No. 12, 1737-1741, 1993.
doi:10.1109/8.273319

17. Hasgall, P. A., E. Neufeld, M. C. Gosselin, A. Klingenbock, and N. Kuster, "TIS database for thermal and electromagnetic, parameters of biological tissues,", Version 2.6, 2015, [Online], Available: www.itis.ethz.ch/database.

18. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley and Sons, 2005.

19. Grimm, M. and D. Manteuffel, "Norton surface waves in the scope of body area networks," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2616-2623, 2014.
doi:10.1109/TAP.2014.2307347

20. King, R. W. P., G. J. Fikioris, and R. B. Mack, Cylindrical Antennas and Arrays, Cambridge University Press, 2002.
doi:10.1017/CBO9780511541100

21. Lea, A., P. Hui, J. Ollikainen, and R. G. Vaughan, "Propagation between on-body antennas," IEEE Trans. Antennas Propag., Vol. 57, No. 11, 3619-3627, 2009.
doi:10.1109/TAP.2009.2031917

22. Alexander, H. and D. L. Miller, "Determining skin thickness with pulsed ultra sound," Journal of Investigative Dermatology, Vol. 72, No. 1, 17-19, 1979.
doi:10.1111/1523-1747.ep12530104

23. Marks, R., P. J. Dykes, and E. Roberts, "The measurement of corticosteroid induced dermal atrophy by a radiological method," Archives of Dermatological Research, Vol. 253, No. 2, 93-96, Sep. 1975.
doi:10.1007/BF00582060

24. Shelkunoff, H. T. and S. A. Friis, Antennas: Theory and Practice, Wiley, New York, 1952.

25. Compton, R. T., "The admittance of aperture antennas radiating into lossy media,", Antenna Lab., The Ohio State University Research Foundation, Columbus, Rept. 1691-5, Mar. 15, 1964.

26. Yang, J. J., Y. L. Chow, and D. G. Fang, "Discrete complex images of a three-dimensional dipole above and within a lossy ground," IEE Proc. H (Microwaves, Antennas Propagation), IET Digit. Libr., Vol. 138, No. 4, 319-326, 1991.
doi:10.1049/ip-h-2.1991.0053

27. Xu, X. and Y. F. Huang, "An efficient analysis of vertical dipole antennas above a lossy half-space," Progress In Electromagnetics Research, Vol. 74, 353-377, 2007.
doi:10.2528/PIER07052202

28. Khalatpour, A., R. Sarraf Shirazi, and G. Moradi, "Analysis of vertical wire antennas above lossy half-space using matrix pencil method," AEU --- Int. J. Electron. Commun., Vol. 64, No. 8, 784-789, 2010.
doi:10.1016/j.aeue.2009.05.006

29. Shubair, R. M. and Y. L. Chow, "A simple and accurate complex image interpretation of vertical antennas present in contiguous dielectric half-spaces," IEEE Trans. Antennas Propag., Vol. 41, No. 6, 1993.
doi:10.1109/8.250457

30. Michalski, K. A. and J. R. Mosig, "The Sommerfeld half-space problem revisited: From radio frequencies and Zenneck waves to visible light and Fano modes," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 1, 1-42, 2016.
doi:10.1080/09205071.2015.1093964

31. Felsen, L. and N. Marcuvitz, Radiation and Scattering of Waves, Prentice-Hall, 1973.

32. Ur-Rehman, M., N. A. Malik, X. Yang, Q. H. Abbasi, Z. Zhang, and N. Zhao, "A low profile antenna for millimeter-wave body-centric applications," IEEE Trans. Antennas Propag., Vol. PP, No. 99, 1-1, 2017.

33. Puskely, J., M. Pokorny, J. Lacik, and Z. Raida, "Antenna implementable into button for on-body communications at 61 GHz," 8th European Conference on Antennas and Propagation (EuCAP), 1551-1555, 2014.
doi:10.1109/EuCAP.2014.6902080