Vol. 78
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-10-14
A New Method of Stomach Tumor Recognition Based on Ultra Wideband Capsule Endoscopy
By
Progress In Electromagnetics Research C, Vol. 78, 193-208, 2017
Abstract
In this paper, a new kind of capsule endoscopy with through-body radar is utilized for the first time. Finite difference time domain (FDTD) method is used to establish an electromagnetic simulation model of stomach. A technique based on the combination of improved back-projection (BP) algorithm and support vector machine (SVM) is proposed to solve the problems of rapidly recognizing tumor shapes in the stomach. In this technique, imaging data can be obtained using the improved BP algorithm and are classified by the SVM. The algorithm must consider the influence of various tissues in the human body: the attenuation of the signal strength of electromagnetic waves, the decrease in speed and the refraction due to the different permittivity between the different organs of the body. These factors will eventually lead to image offset, and even generate a virtual image. It is effective to refrain the displacement of image with modifying the time element of the imaging algorithm by iteration. Simulation results based on data from the model verify its feasibility and validity. Results further demonstrate that the resolution is extremely high. Tumor shapes, which have different sizes, positions, and quantities, can be reconstructed using this approach. When the data are contaminated by noises, the tumor shape in the stomach can still be suitably predicted, which demonstrates the robustness of the method. Finally, classification accuracy analysis for different sampling distances and sampling intervals shows that the effects of changing the distance and intervals on shape recognition are limited. The classification accuracy can also be improved by decreasing the sampling intervals or increasing the sampling distance.
Citation
Gong Chen, Ye-Rong Zhang, and Bi-Yun Chen, "A New Method of Stomach Tumor Recognition Based on Ultra Wideband Capsule Endoscopy," Progress In Electromagnetics Research C, Vol. 78, 193-208, 2017.
doi:10.2528/PIERC17080503
References

1. Bolomey, J. C., "Recent european developments in active microwave imaging for industrial, scientific, and medical applications," IEEE T. Microw. Theory, Vol. 37, 2109-2117, Dec. 1989.
doi:10.1109/22.44129

2. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 481-494, 2004.
doi:10.1163/156939304774113089

3. Craddock, J., M. Donelli, D. Gibbins, and M. Sarafianou, "A three-dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetics Research M, Vol. 18, 179-195, 2012.

4. Rocca, P., M. Donelli, G. L. Gragnani, and A. Massa, "Iterative multi-resolution retrieval of nonmeasurable equivalent currents for the imaging of dielectric objects," Inverse Problems, Vol. 25, No. 5, 2009.
doi:10.1088/0266-5611/25/5/055004

5. Franceschini, G., M. Donelli, R. Azaro, and A. Massa, "Inversion of phaseless total field data using a two-step strategy based on the iterative multiscalling approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 12, 3527-3539, Dec. 2006.
doi:10.1109/TGRS.2006.881753

6., National Breast Cancer Coalition (NBCC), URL: http://www.stopbreast- cancer.org, 2014.

7. Yujiri, L., "Passive millimeter wave imaging," IEEE MTT-S International Microwave symposium, Vol. 4, 98-101, Jun. 2006.

8. Hu, C., L. Liu, and B. Sun, "Compact representation and panoramic representation for capsule endoscope images," Int. J. Inf. Acquisit., Vol. 6, 257-268, 2009.
doi:10.1142/S0219878909001989

9. Hwang, S. and M. Emre Celebi, "Polyp detection in wireless capsule endoscopy videos based on image segmentation and geometric feature," Proc. 2010 IEEE Int. Conf. Acoust. Speech Signal Process., 678-681, Mar. 2010.
doi:10.1109/ICASSP.2010.5495103

10. Gono, K., "Multifunctional endoscopic imaging system for support of early cancer diagnosis," IEEE J. Sel. Topics Quant. Electron, Vol. 14, No. 1, 62-69, Jan. 2008.
doi:10.1109/JSTQE.2007.913966

11. Gono, K., T. Obi, M. Yamaguchi, N. Ohyama, H. Machida, Y. Sano, S. Yoshida, Y. Hamamoto, and T. Endo, "Appearance of endhanced tissue features in narrow band endoscopic imaging," J. Biomed. Opt., Vol. 9, 568-577, May 2004.
doi:10.1117/1.1695563

12. Gono, K., K. Yamazaki, N. Doguchi, T. Nonami, T. Obi, M. Yamagichi, N. Ohyama, H. Machida, Y. Saono, S. Yoshida, Y. Hamamoto, and T. Endo, "Endoscopic observation of tissue by narrow band illumination," Opt. Rev., Vol. 10, 211-215, 2003.
doi:10.1007/s10043-003-0211-8

13. Atasoy, S., B. Glocker, S. Giannarou, D. Mateus, A.Meining, G. Yang, and N. Navab, "Probabilistic region matching in narrow-band endoscopy for targeted optical biopsy," Proc. MICCAI, 499-506, 2009.

14. Li, B. and M. Q.-H. Meng, "Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection," IEEE Trans. on Information Technology in Biomedicine, Vol. 16, No. 3, 323-329, May 2012.
doi:10.1109/TITB.2012.2185807

15. Li, B. and M. Q.-H. Meng, "Computer aided detection of bleeding regions in capsule endoscopy images," IEEE Trans. Biomed. Eng., Vol. 56, No. 4, 1032-1039, Apr. 2009.
doi:10.1109/TBME.2008.2010526

16. Li, B. and M. Q.-H. Meng, "Texture analysis for ulcer detection in capsule endoscopy images," Image Vis. Comput., Vol. 27, No. 9, 1336-1342, Aug. 2009.
doi:10.1016/j.imavis.2008.12.003

17. Li, B. and M. Q.-H. Meng, "Computer-based detection of bleeding and ulcer in wireless capsule endoscopy images by chromaticity moments," Comput. Bilo. Med., Vol. 39, No. 2, 141-147, Feb. 2009.
doi:10.1016/j.compbiomed.2008.11.007

18. Wang, L., Support Vector Machines: Theory and Applications, Springer-Verlag, New York, 2005.
doi:10.1007/b95439

19. Jain, A. K. and D. Zongker, "Feature selection, evaluation, application, and small sample performance," IEEE Trans. PAMI, Vol. 19, No. 2, 153-158, Feb. 1997.
doi:10.1109/34.574797

20. Dash, M. and H. Liu, "Feature selection for classification," Intell. Data Anal., Vol. 1, 131-156, 1997.
doi:10.1016/S1088-467X(97)00008-5

21. Guyon, I., J. Westion, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Mach. Learn., Vol. 46, 389-422, 2002.
doi:10.1023/A:1012487302797

22. Wang, F. and Y. Zhang, "A real-time through-wall detection based on support vector machine," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 75-84, 2011.
doi:10.1163/156939311793898396

23. Vapnik, V., The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.
doi:10.1007/978-1-4757-2440-0

24. Miteran, J., S. Bouillant, and E. Bourennane, "SVM approximation for real-time image segmentation by using an improved hyperrectangles-based method," Real-Time Imaging, Vol. 9, 179-188, 2003.
doi:10.1016/S1077-2014(03)00035-4

25. Vapnik, V., Statistical Learning Theory, J. Wiley, New York, 1998.

26. Steinwart, I., "On the optimal parameter choice for v-support vector machines," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 25, No. 10, 1274-1284, 2003.
doi:10.1109/TPAMI.2003.1233901

27. Mangasarian, O. and D. Musicant, "Lagrangian support vector machines," Journal of Machine Learning Research, Vol. 1, 161-177, 2001.

28. Salmon, N. A., "Polarimetric scene simulation in millimeter-wave radiometric imaging," Proc. SPIE, 260-269, Feb. 2004.
doi:10.1117/12.562206

29. Chapelle, O., P. Haffner, and V. N. Vapnik, "Support vector machines for histogram-based image classification," IEEE Transactions on Neural Networks, Vol. 10, No. 5, 1055-1064, May 1999.
doi:10.1109/72.788646

30. Fetterman, M. R., J. Dougherty, W. L. Kiser, and Jr., "Scene simulation of mm-wave images," IEEE 2007 AP-S Int. Symposium, 1493-1496, Dec. 2007.

31. Gurel, L. and U. Oguz, "Three-dimensional FDTD modeling of a ground-penetrating radar," IEEE Trans. Geosci. Remote Sens., Vol. 38, 1513-1520, Apr. 2008.

32. Wu, S. Y., Y. Y. Xu, and J. Chen, "Through-wall shape estimation based on UWB-SP radar," IEEE Geosci. Remote Sens. Letters, Vol. 10, 1234-1238, May 2013.
doi:10.1109/LGRS.2012.2237012

33. Dehmollaian, M., "Through-wall shape reconstruction and wall parameters estimation using differential evolution," IEEE Geosci. Remote Sens. Letters, Vol. 8, 201-205, Feb. 2011.
doi:10.1109/LGRS.2010.2056912

34. Cheng, Z., W. Ji, and L. Hao, "Imaging algorithm for synthetic aperture interferometric radiometer in near field," Science China Technological Sciences, Vol. 54, 2224-2231, Aug. 2011.
doi:10.1007/s11431-011-4323-2

35. Lei, W., C. Huang, and Y. Su, "A real-time BP imaging algorithm in SPR application," IEEE International Geoscience and Remote Sensing Symposium, 1734-1737, 2005.

36. Ahmad, F., M. Amin, and S. Kassam, "A beamforming approach to stepped-frequency synthetic aperture through-the-wall radar imaging," IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 24-27, 2005.
doi:10.1109/CAMAP.2005.1574174