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A New Method of Stomach Tumor Recognition Based on Ultra
Wideband Capsule Endoscopy

Gong Chen*, Ye-Rong Zhang, and Bi-Yun Chen

Abstract—In this paper, a new kind of capsule endoscopy with through-body radar is utilized for
the first time. Finite difference time domain (FDTD) method is used to establish an electromagnetic
simulation model of stomach. A technique based on the combination of improved back-projection (BP)
algorithm and support vector machine (SVM) is proposed to solve the problems of rapidly recognizing
tumor shapes in the stomach. In this technique, imaging data can be obtained using the improved BP
algorithm and are classified by the SVM. The algorithm must consider the influence of various tissues
in the human body: the attenuation of the signal strength of electromagnetic waves, the decrease in
speed and the refraction due to the different permittivity between the different organs of the body.
These factors will eventually lead to image offset, and even generate a virtual image. It is effective
to refrain the displacement of image with modifying the time element of the imaging algorithm by
iteration. Simulation results based on data from the model verify its feasibility and validity. Results
further demonstrate that the resolution is extremely high. Tumor shapes, which have different sizes,
positions, and quantities, can be reconstructed using this approach. When the data are contaminated
by noises, the tumor shape in the stomach can still be suitably predicted, which demonstrates the
robustness of the method. Finally, classification accuracy analysis for different sampling distances and
sampling intervals shows that the effects of changing the distance and intervals on shape recognition
are limited. The classification accuracy can also be improved by decreasing the sampling intervals or
increasing the sampling distance.

1. INTRODUCTION

Inverse scattering problem in electromagnetic devices refers to the use of radar signals from outside the
scatter to invert the electromagnetic characteristics of the scatter; the word “scattering” is a generalized
concept, which includes reflection, refraction, diffraction, transmission, and scattering [1]. This theory
is widely applied in different areas, such as microwave imaging techniques [2–5], medical imaging,
seismology, ground penetrating radars, and geophysical exploration.

The gastrointestinal (GI) tract is a hollow and muscular conduit from the mouth to the anus. GI
tract-related cancers, such as gastric, esophageal, and colon cancers, have been ranked as the third,
fourth, and fifth causes of male cancer deaths, respectively, whereas they have been ranked as the
fourth, fifth, and sixth causes of female cancer deaths, respectively, in Hong Kong in 2014 [6]. Tumors
in the GI tract largely threaten human health.

A novel technique of endoscopy called wireless capsule endoscopy (WCE) was introduced in 2000
to diagnose GI tract cancers [7–9]. It consists of a camera with a short focal length, light source, and
radio transmitter. After the capsule is swallowed by a patient, it relies on the self peristalsis of the
human GI tract for movement through the esophagus and stomach before finally draining out of the
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body. The process took more than 8 hours. The camera takes photos of the GI tract that produce
thousands of images in each examination. Spending two or more hours to review all the images would
be time consuming for physicians. The chances of committing errors and misdiagnoses increase because
the physicians are focused on a small part of the field for a long time. Gono et al. proposed the narrow
band image technology to overcome these drawbacks of traditional endoscope [10–12]. Atasoy et al. [13]
proposed an MRF-based matching technique that incorporates region-based similarities and spatial
correlations of neighboring regions that are applied to narrow-band endoscopy for targeted optical
biopsy. Recently, Li and Meng studied a computerized tumor detection system for WCE images, which
exploits textural features and support vector machine (SVM)-based feature selection [14–17].

The aforementioned studies have solved the detection of bleeding and ulcer in WCE images but
have not achieved real-time imaging. Therefore, a new type of capsule endoscopy which called ultra
wideband capsule endoscopy with through-body radar is used in the present study for the first time.
This paper breaks the traditional method of carrying camera in capsule endoscope, but adds ultra
wideband radar in new capsule endoscope, so as to achieve the purpose of real-time imaging of stomach
tumors. A technique based on the combination of improved back projection (BP) algorithm and SVM
is proposed. This paper simulates the propagation model of electromagnetic wave in human body. In
order to eliminate the morbidity and nonlinearity in human imaging, the time element in BP algorithm
is modified. In this technique, imaging data can be obtained by utilizing the improved BP algorithm and
classified by SVM. Based on efficiency, improved BP algorithm requires 40 s to 60 s on the computer with
Intel Core i5 CPU. After obtaining characteristic data, prediction process of SVM based on improved
BP algorithm requires only 1 s. Therefore, the method on the combination of SVM and improved BP
algorithm not only can recognize the location and shape of the tumors, but also can meet requirements
of real-time detection. It can be employed for tumor positioning and help clinicians make decisions.

2. PROPAGATION MODEL OF ELECTROMAGNETIC WAVE IN HUMAN BODY

Ultra-wideband radar has three basic modes, including short pulse, frequency modulation and frequency
step modulation. The fractional bandwidth of ultra wideband short pulse radar is greater than 0.25. It
has short launch range, just a few nanoseconds, and excellent range resolution. For ultra short range
detection, it has good transmission characteristics. It has obvious advantages in human body imaging,
so the UWB short pulse radar is used in this paper.

As shown in Figure 1, the thickness of the stomach is dw, and relative dielectric constant is εr.

2
W

W

1
W

r

i rw
d

F

1rd

1r

1i

G

1
V 2

V

V

0 X

Figure 1. Refraction model.
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The thickness of the abdominal muscles is d, and relative dielectric constant is εr1. In rectangular
coordinates X-0-Y , the position of the capsule emission source is the coordinate origin; the position
of the receiving antenna is S(sx, sy); the intersection of the electromagnetic wave and the stomach is
P (px, py); the refracted point is W (wx, wy); the coordinates of F is F (fx, fy), fx = qx−wx, fy = qy−wy.
The intersection of electromagnetic waves with the abdominal cavity is Q(qx, qy); the refracted point is
V (vx, vy); the coordinates of G is (gx, gy), gx = sx − vx, gy = sy − vy.

The propagation path of electromagnetic wave in the stomach is calculated by the iteration method.
Two extreme cases are considered: assuming that the stomach wall is air, the relative dielectric constant
is εr = 1. Then there is no refraction in the electromagnetic wave, and its propagation path is straight
OPQ. The intersection of the electromagnetic wave and the stomach is W2(w2x, py + dw). It is also
assumed that the relative dielectric constant of the gastric wall is infinite. The propagation path
of electromagnetic wave is approximately perpendicular to the stomach wall. The propagation path
is OPW 1Q, and the intersection point is W1w1x, py + dw). Since the electromagnetic wave has to
satisfy the law of refraction on the surface of two kinds of dielectric decomposition, it can be seen that
w1 < w < w2. The geometric relationship between the incident angle and refraction angle is as follows:

sin(θi) =
wx − px√

(wx − px)2 + (wy − py)2
(1)

sin(θr) =
fx√

f2
x + f2

y

(2)

k =
sin(θi)
sin(θr)

(3)

where fx = qx − wx, fy = qy − wy; refractive index is k; incident angle is θi; refraction angle is θr.
The actual refractive index W (wx, wy) is obtained by iterative method:

(a) Let the initial value of wx be the midpoint w0 of the interval (wx1, wx2), k is obtained by
Equations (1), (2) and (3).

(b) k is compared with the relative dielectric constant of gastric wall tissue εr, if k < εr, take the
midpoint of the interval (wx1, w0), if k > εr, take the midpoint of the interval (w0, wx2).

(c) Repeat steps (a) and (b) until k = εr, then the iteration stops. Finally, the refraction point
W (wx, wy) is obtained.

Similarly, the refractive index of the electromagnetic wave in the abdominal muscles εr1 can be calculated
in the manner described above.

The propagation distance of electromagnetic wave in the gastric wall is l1. The propagation distance
in non-human tissues is l2 + l3 + l4. The propagation distance in the abdominal muscles is l5. The
propagation time of an electromagnetic wave from the transmitter to the receiver is:

t =
l1
v

+
l2 + l3 + l4

c
+

l5
v

=
√

εrl1
c

+
l2 + l3 + l4

c
+

√
εr1l5
c

=
√

εrl1 +
√

εr1l5 + l2 + l3 + l4
c

=
deff

c
(4)

where deff is the effective propagation distance of electromagnetic wave, c the speed of light in vacuum,
v the speed at which electromagnetic waves travel through the stomach wall and abdominal muscles,
εr the relative dielectric constant of the gastric wall, and εr1 the relative permittivity of the abdominal
cavity.
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3. BASIC PRINCIPLE OF SVM

3.1. SVM

SVM is a state-of-the-art technique applied to classification and demonstrates better accuracy and
computational advantages over several other traditional classification approaches [18–21].

SVM is a linear classifier. Its purpose in this study is to select the classified hyperplane, which
can maximize the margin that separates the two sample classes in a binary classifier. First, we define
a new set of labeled patterns called the training set. Let {(xi, yi), i = 1, 2, . . . , l} be such a set, where
xi ∈ Rn is the input information, yi ∈ {1,−1} the output information of the category of target, and
l the number of training samples. Presumably, we introduce a slack variable ξi, ξ∗i for compatibility.
Suppose that all the data are fitted in a linear function with accuracy ε. The optimization problem can
then be expressed in the following form:

min

(
1
2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i )

)
, (5)

which is subject to the following:

((w · xi) + b) − yi ≤ ξi + ε, ξi ≥ 0 (i = 1, 2, . . . , l)
yi − ((w · xi) + b) ≤ ξ∗i + ε, ξ∗i ≥ 0 (i = 1, 2, . . . , l)

, (6)

where w and b are the weight vector and parameter of the decision function, respectively. C
l∑

i=1
(ξi + ξ∗i )

is the loss function, and C is the penalty parameter.
When SVM are adopted to solve the regression problem, the loss function is introduced to detect

the error between the fitting and target values. The loss functions mainly include Quadratic, Laplace,
Huber, and ε-insensitive ones.

The loss function used in this study is ε-insensitive with a specific form presented as follows:

c(f(x) − y) =
{

0 if |f(x) − y| ≤ ε

|f(x) − y| − ε otherwise.
(7)

Assume that all data are error free in accuracy, so the linear function is utilized to fit them. ε
represents accuracy, and y is the actual function value. Given the Lagrange method, the dual-version
of the aforementioned problem corresponds to the solution of the following quadratic program:

max

⎛
⎝1

2

l∑
i=1

l∑
j=1

yiyjαiαj < φ(x) · φ(xi) > −
l∑

j=1

αj

⎞
⎠ , (8)

which is subject to the following:
l∑

i=1

yiαi = 0, 0 ≤ αi ≤ C (i = 1, 2, . . . , l), (9)

where αi is the Lagrange coefficient, and C is the penalty parameter.
The corresponding decision function can be written as follows:

ζ = sgn

(
j∑

i=1

αiyi〈zi, z〉 + b

)
, (10)

where 〈•, •〉 is the operation symbol of the inner product.
In the detection of human body images, the relationship between the target information and

receiving signal is no longer linear because of the actions of the human body. This condition belongs
to linearly non-separable problems in SVM recognition [22–25]. Thus, the nonlinear problem in the low
dimensional space is mapped into a linear problem in the high dimensional space by the non-linearity
transformation to solve this problem. We determine the unique optimal hyperplane, which can set the
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highest degree of separation for the two groups of sample data. We then calculate z
′
i and inner product

z
′
from the solution of Eq. (10) in the high dimensional space, where z′i and z′ are the vectors in the said

space. However, we only know the vector in the low dimensional space. Thus, we utilize the Hilbert
transform to calculate the inner product of the vector in the low dimensional space to replace the inner
product in the high dimensional space with kernel functions that satisfy the Mercer condition [26–29].
The kernel function can be written in the following form:

K(zi · z) = 〈z′i, z′〉 (11)

It does not have to determine the detailed mapping relationship of zi while avoiding the problem of curse
of dimensionality. Thus, it solves the ingenious problem of inner product operation in high dimensional
space. At this point, the decision function can be written as follows:

ζ = sgn

(
l∑

i=1

αiyiK(zi, z) + b

)
(12)

We can obtain a signed value when we enter a new variable z by calculating Eq. (12). This singed value
represents the SVM classification of the input z.

3.2. Tumor Recognition Method Based on SVM

Given that the electrical parameters (dielectric constant and electrical conductivity) of healthy and
cancer cells are different, they can be classified into two types: healthy cells are negative, whereas cancer
cells are positive. SVM suitably performs in binary classification. The simulation data is obtained by
the Finite difference time domain (FDTD) method [30–34]. These field values are used as characteristic
data of the SVM method. Each mesh that corresponds to cancer cells or healthy cells is labeled as
positive or negative. The feature data and default category labels correspond to the SVM input and
output, respectively. When tumors present a positive signal, the label is 1. When healthy cells exhibit
a negative signal, the label is 0. The SVM input and output have a one-to-one mapping relationship.
Therefore, we must determine the characteristic value of each mesh. The flow of the improved BP
algorithm [35, 36] is presented as follows:
1) Imaging area is divided into a certain mesh intervals.
2) For each mesh, round-trip delay from transmitter to receiver is computed as follows:

t(n) =
R(n)

v
, (13)

where R(n) represents the path from receiver to capsule. Propagation path is no longer a
straight line because of refraction when electromagnetic waves spread throughout the human body.
Therefore, effective path deff must be first calculated in experiments by Equation (4) in Section 2.
V corresponds to actual propagation velocity of electromagnetic wave in the human body.

3) Electric field value in position of the receiver is recorded.
4) Steps 1 to 3 are repeated for each mesh.
5) Magnitude of each mesh is calculated in Step 3 and is added as follows:

e(x, z) =
∑
n

e(t(n)). (14)

Thus, the amplitude value of each mesh is obtained. The scattering echoes of the tumors, marked
as Es, are then calculated by the background subtraction method. First, the model is simulated in the
non-tumor condition in the stomach. We then record the radar signal on all receiver antennas. Second,
we only add a tumor model into the stomach model and do not change the other parameter settings.
The model is simulated again in this scenario. We record the radar signal on all receiver antennas again.
The receiving signal of the tumor itself is obtained by subtracting the first recorded signal from the
second recorded signal.

For each mesh, the feature vector Es is used as the input, and the corresponding category label,
marked as ζ, is employed as the output. The data (ES , ζ) are divided into two parts through the
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evaluation system of the training sample data of SVM to obtain the training model. We utilize the
training model to forecast data by intelligent evaluation and analysis, as well as obtain the category
label of the corresponding position. The position of tumors and healthy cells are distinguished based
on the category label to realize the localization and recognition of the tumors.

4. ESTABLISHMENT OF SVM MODEL

This study uses the SVM toolbox developed by Professor Lin Zhiren of Taiwan University to forecast
classification accuracy. A total of 364 pixels are selected as training samples, including a certain number
of positive samples. Appropriate classifier, kernel function, and normalization methods are selected
according to results of several experiments.

Two categories of classifiers, namely, C-SVC and V-SVC, can be selected when SVM is considered as
a classifier. Improved BP algorithm is used to predict radar data using the two classifiers. After training,
classification accuracies reach 88.674% and 85.321% for C-SVC and V-SVC, respectively. Accuracy rate
of C-SVC is higher than that of V-SVC by 3.353%. Thus, C-SVC classifier is selected to train and
predict data.

Choice of kernel function significantly affects classification results of SVM. SVM toolbox presents
four kinds of kernel function: linear kernel function, polynomial kernel function, radial basis kernel
function (RBF), and sigmoid kernel function. SVM toolbox is used to train and predict the data
obtained by improved BP algorithm with the four kinds of kernel functions. Classification accuracies of
the four kernel functions total are 67.745%, 64.823%, 88.674%, and 50.015%, respectively. Thus, RBF
is selected for the SVM model.

This section investigates the influence of normalization of feature data on classification accuracy.
Radar data obtained by BP algorithm are normalized by [−1, 1], [0, 1] or non-normalized. Classification
accuracies of the three methods reach 88.651%, 88.674%, and 81.962%. Thus, [0, 1] normalization can
achieve the best classification results based on presented data.

Penalty parameter C and the parameter δ2 in RBF can be obtained by optimization of genetic
algorithms or networks. As stomach tumor imaging requires real-time imaging, longer delay results in
poorer disease prognosis. Therefore, this paper adopts a network optimization method with shorter
computation time.

According to machine type classifications, kernel functions, normalization, and parameter selection
tests, high classification accuracy in obtaining parameters of C and δ2 can be achieved with the use
of C-SVC classification, RBF, [0, 1] normalization, and network optimization method. Radar data
obtained by improved BP algorithm are trained to obtain the SVM model, namely, modelBP. Then,
this model is used for subsequent experiments.

5. EXPERIMENTS

5.1. Establishment of the Gastric Tumor Model

The stomach model is shown in Figure 2. The length of the abdominal cavity is 20 cm, whereas its
width is 12.5 cm. The relative dielectric constant and electrical conductivity of the abdominal cavity
are 36 and 7S/m, respectively. A circular tumor model with a diameter of 1 cm in the site of the
coordinate (0 cm, 4 cm) is obtained. The relative dielectric constant of the tumor is 50, and its electrical
conductivity is 4 S/m. The signal source is (0 cm, 0 cm) in a coordinate system. The receiver antenna
is placed close to the outer side of the abdomen. A receiver antenna is arranged in the X direction
every 0.5 cm. The aperture length is 22 cm, and the antenna number is 45. The transmitting signal is
a sine-modulated Gauss pulse with a center frequency of 4 GHz and width of 0.6 ns. The frequency and
time domain waveforms of the signal are shown in Figures 3 and 4, respectively.

The space interval of the FDTD is dx = dy = 1mm, and the time interval is dt = 19.25 × 10−12.
The calculation area is surrounded by a perfect matched layer absorbing boundary.

The imaging area is divided into a 400×300 mesh to improve the accuracy of target recognition. The
feature vector is obtained according to the BP algorithm. The samples are then trained by the LibSVM
toolbox. This condition means that 120,000 samples contain 377 positive samples and 119,623 negative
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Figure 2. Stomach model.

Figure 3. Frequency domain waveform of the
transmitted signal.
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Figure 4. Time domain waveform of the
transmitted signal.

samples. A total of 364 data samples, which must include the target information, are selected as the
training set. After the training is completed, the training model and receiver operating characteristics
(ROC) are obtained. The ROC curve is shown in Figure 5. The classifier has proper classification
ability for positive and negative categories as shown in the said figure.

The training model is utilized to predict the entire imaging area. The positive and negative
classification accuracy values are 88.674% and 99.964%, respectively. The label of the positive class
is 1, whereas the label of the negative class is 0. The classification accuracy of the negative class is
extremely high, which indicates that the ability to predict the medium is excellent. The classification
accuracy of the positive class is slightly lower, but it can also meet the requirements of stomach imaging.
Figure 6 shows the 2D image map formed by the electric field intensity. Figure 7 shows the 3D image
map. Figure 8 shows the image map formed by the prediction of the category labels. The red outline
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Figure 5. ROC curve.

Figure 6. Imaging results by the electric field
intensity.

Figure 7. 3D imaging results by the electric field
intensity.

indicates the skin of the human body. Red inner frame express the abdomen of human body. The
golden box indicates the location of the tumor.

The color block in Figure 8 is the actual location of the tumor target. The actual position and
imaging position are relatively consistent. The accurate location of the target is successfully obtained. A
virtual shadow exists in the grayscale map of the electric field intensity. The prediction method based on
SVM not only eliminates the virtual shadow effectively, but also retains most of the target information.
The tumor target information can be predicted when the classification accuracy reaches a certain degree
(i.e., the shape of the tumor target has a certain ability to be identified). The classification accuracy of
the positive class in this study is 88.674%. The shape and position of the tumor target can be judged
properly.

Figure 9 shows the amplitude distribution of the tumor signal in azimuth direction. Figure 10 shows
the amplitude distribution of the tumor signal in distance direction. As can be seen from Figures 9
and 10, the peak points are near the actual location of the tumor (0 cm, 4 cm) and achieve very good
distance direction resolution and azimuth direction resolution.
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Figure 8. Imaging results by the prediction of
the category labels.

Figure 9. Azimuth direction amplitude distribu-
tion.

Figure 10. Distance direction amplitude distribution.

Figure 11 shows the distribution of the category labels of the predicted tumor targets in the distance
and azimuth directions. In particular, it represents the resolution of the range and azimuth directions,
respectively. The tumor position and size are largely consistent with the actual size, which indicates
that the distance resolution is extremely high. The azimuth resolution is slightly worse, and some
discontinuous phenomena are observed. These conditions will affect the judgment of the target size.
It can sometimes be mistaken for multiple goals. The larger the target size, the more significant the
impact to the judgment on the target size. Therefore, SVM is highly suitable for the study of gastric
rumor imaging.

5.2. Reconstruction of Tumor Models in Different Patients

We obtained a training model of gastric cancer in Section 2.1. This model is then used to predict
the different shapes, sizes, locations, and quantities of tumor targets. Given the simulation model in
Section 3.1, only the size, location, quantity, and shape of the tumor target are changed:

1) Rectangular shape of the tumor with center coordinates of (3.2 cm, 4.4 cm), length of 1 cm, and
width of 0.3 cm;
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(a) (b)

Figure 11. Resolution of the tumor target. (a) Distance direction. (b) Azimuth direction.

2) Circular tumor shape with center coordinates of (3.5 cm, 3.2 cm) and diameter of 0.8 cm;
3) Square shape of the tumor with center coordinates of (4.2 cm, 2.8 cm) and length of 0.5 cm;
4) Two tumors are detected in the stomach, whose locations, sizes, and shapes are the same as those

of Eqs. (1) and (3).

The simulation results are shown in Figures 12 and 13. The said figures show that the prediction
results of the SVM and real model are all largely similar in terms of position, shapes, quantities, and
sizes. However, virtual shadows exist for multiple tumor targets as shown in Figures 12(c) and 12(d).
This phenomenon is related to the improved BP algorithm. In this algorithm, when the target is
excessively long in the distance distribution, the signal will be blocked by its front part. Hence, the
latter part of the information cannot be obtained, and the imaging effect becomes poor. The distance
resolution can be increased by the increasing signal bandwidth. However, this condition will create more
shadows and bring more negative effects. Nevertheless, the original shape and position of the target can
still be determined. The improved BP algorithm requires 40 s to 60 s based on the algorithm efficiency.
After obtaining characteristic data, the SVM prediction based on the algorithm lasts for 1 s. Thus, the
method based on the combination of SVM and improved BP algorithm can meet the requirements of
real-time detection.

5.3. Signal Polluted by the Noises

The predicted results are based on noise-free conditions. Nevertheless, the data collection process is
bound to have noise pollution. Thus, we have to study the signal with the noise.

Table 1 shows the use of the training model to predict the signal of noise pollution. After the
addition of different SNR noises, the classification accuracy levels of the positive and negative classes
in the imaging area are obtained. The said table shows that the classification accuracy is basically
unchanged with the increase in the SNR. This condition shows that the effect of noise pollution on
the imaging results is relatively limited. In the imaging region class, the classification accuracy of the
negative class is especially high, and the error is 3 bits after the decimal point. This scenario is due to
the number of negative class samples being much larger than that of the positive class. The classification
accuracy of the positive class is slightly lower, especially the circular tumor, which is related to the input
data. However, suitable recognition is still obtained.

The relative root mean square error (RMSE) of the abscissa and ordinate of the tumor center is
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(a) (b)

(c) (d)

Figure 12. Tumor imaging in different scenarios by the improved BP algorithm. (a) Rectangle tumor
imaging based on the improved BP algorithm. (b) Circular tumor imaging based on the improved BP
algorithm. (c) Square tumor imaging based on the improved BP algorithm. (d) Imaging of two tumors
based on the improved BP algorithm.

Table 1. Classification accuracy of the signal after the noise addition.

SNR/dB 5 30 50 No noise

Square
Imaging area 99.937% 99.935% 99.934% 99.937%

Negative 99.815% 99.814% 99.812% 99.815%
Positive 87.987% 88.323% 88.432% 88.674%

Circular
Imaging area 99.238% 99.237% 99.234% 99.241%

Negative 99.801% 99.798% 99.795% 99.804%
Positive 46.213% 45.806% 45.684% 46.353%

Rectangle
Imaging area 99.578% 99.572% 99.567% 99.586%

Negative 99.476% 99.469% 99.465% 99.489%
Positive 88.642% 88.619% 88.573% 88.661%

Two tumors
Imaging area 99.625% 99.618% 99.609% 99.625%

Negative 99.574% 99.568% 99.563% 99.575%
Positive 89.123% 89.076% 89.055% 89.125%
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(a) (b)

(c) (d)

Figure 13. Tumor imaging in different scenarios by SVM. (a) Rectangle tumor target recognition
imaging by SVM based on the improved BP algorithm. (b) Circular tumor target recognition imaging
by SVM based on the improved BP algorithm. (c) Square tumor target recognition imaging by SVM
based on the improved BP algorithm. (d) Target recognition imaging of two tumors by SVM based on
the improved BP algorithm.

defined as follows:

eRMS,x =

√√√√ 1
N

N∑
i=1

(
xiact − xipre

lx

)2

eRMS,x =

√√√√ 1
N

N∑
i=1

(
yiact − yipre

ly

)2

(15)

where (xiact, yiact) is the actual location of the tumor target, (xipre, yipre) is the predictive location of
the tumor target, lx and ly are the model length and width, and N is the number of the test samples.

The proposed method can localize stomach tumors even at low SNR, as shown in Figure 14. As
SNR increases, RMSE decreases, and positioning effect improves (i.e., this method is robust).

This section predicts the signal with noise pollution using by the no-noise model. The classification
results are basically the same, which shows that the method is robust.



Progress In Electromagnetics Research C, Vol. 78, 2017 195

(a) (b)

Figure 14. Tumor target location prediction results of the relation between RMSE and SNR: (a)
abscissa, (b) ordinate.

5.4. Effect on the Classification Accuracy of the Sampling Interval and Distance

When the sampling interval and distance are different, the collected data will also be different. The
following cases are considered:
1) The sampling distance is 45 cm, and the sampling interval is 0.5 cm;
2) The sampling distance is 9 cm, and the sampling interval is 2.5 cm (the sampling length is constant,

whereas the sampling interval is increased 5 times);
3) The sampling distance is 22 cm, and the sampling interval is 0.5 cm (the sampling length is decreased

by half, whereas the sampling interval is constant);
Table 2 shows that with the change in sampling interval and distance, the prediction results are

different. The classification accuracy of the positive class shows that case 1 has the highest accuracy,
case 2 has the lowest accuracy, and case 3 is in the middle. These results mean that the classification
accuracy can be improved by decreasing the sampling intervals or increasing the sampling distance.

Table 2. Classification accuracy of different sampling distances and intervals.

Classification accuracy Imaging area Negative Positive

Square
Case 1 99.937% 99.815% 88.674%
Case 2 99.942% 99.841% 79.523%
Case 3 99.928% 99.802% 86.549%

Circular
Case 1 99.241% 99.804% 46.353%
Case 2 99.132% 99.909% 36.957%
Case 3 99.134% 99.886% 37.562%

Rectangle
Case 1 99.586% 99.489% 88.661%
Case 2 98.927% 98.842% 65.761%
Case 3 99.486% 99.471% 79.826%

Two tumors
Case 1 99.625% 99.575% 89.125%
Case 2 99.112% 99.218% 66.204%
Case 3 99.623% 99.748% 81.157%
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Furthermore, the effect of increasing the sampling distance on the classification is smaller than that
of decreasing the sampling intervals. The error rate of the classification accuracy is within 20% in all
of the aforementioned scenarios. The difference is insignificant, And the robustness of the method is
proved again.

The relationship between the RMSE and sample location number R is shown in Figure 15.
With the increase in sampling location, the prediction error decreases, and the prediction

performance improves. Results show that the detection accuracy of a gastric tumor can be improved
by increasing the number of receiving antennas.

Therefore, the stability of the method, which uses SVM to predict the tumor target, is demonstrated
in different shapes, quantities, positions, SNRs, sampling intervals, and sampling distances. SVM is a
learning machine for small sample data. The operation time in determining characteristic data is less
than 1 s regardless of the condition, which provides the possibility of real-time tumor imaging.

(a) (b)

Figure 15. Tumor target location prediction results of the relation between RMSE and R: (a) abscissa,
(b) ordinate.

(a) (b)

Figure 16. Tumor target location prediction results of the relation between RMSE and training size
V: (a) abscissa, (b) ordinate.
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We also studied the prediction error with respect to the training size. The experimental results
are shown in Figure 16. It is can be seen that with the increase the size of the training set, ERMS is
decreasing.

6. CONCLUSION

This study utilizes the FDTD method to obtain radar signal data. The improved BP algorithm is
then employed to calculate the intensity of each pixel in imaging areas. The intensity of each pixel
in imaging area and default category labels are marked as the SVM input and output, respectively.
Experimental results show that improved BP algorithm can locate tumor targets. However, the BP
method produces virtual scenes in multi-target imaging because of signal interference. It is effective
to refrain the displacement of image with modifying the time element of BP algorithm by iteration to
eliminate virtual scenes The SVM method is applied to select some data as the training set so that the
training model can be obtained. The model is used to predict the data with noise pollution, as well
as different shapes, quantities, sampling intervals, and sampling distances. The results are satisfactory.
The SVM method not only determines the location of tumor targets accurately, but also clearly shows
the tumor sizes and shapes. The robustness and feasibility of the method are proved. Future work
should focus on improving the efficiency of the proposed method and studying the 3D tumor model.
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