Vol. 74
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-05-02
A Novel Z-EBG Structure Embedded by DBCSRR for Suppression of Simultaneous Switching Noise
By
Progress In Electromagnetics Research C, Vol. 74, 9-17, 2017
Abstract
Aimed at solving the problems of high initial cutoff frequency, small stopband range and poor inhibition in the current electromagnetic band gap (EBG) structure, an electromagnetic band gap structure designed on the basis of periodic Z-bridge EBG inserted by a double complementary slit ring resonator (DBCSRR) cell is proposed. Compared with the traditional EBG structure, the proposed EBG structure can achieve 270 MHz-20 GHz bandwidth in a reference of -30 dB, which is wide in range. The measured and simulated results indicate the wideband of noise suppression. In addition, the lower and upper cutoff frequencies are estimated by using equivalent circuit models, respectively. Moreover, the IR-Drop and dc resistance is accurately investigated through 3-D simulations. Finally, the transfer characteristics of single signal line are studied.
Citation
Xiu-Jie Hu, and Zhi-Min Sun, "A Novel Z-EBG Structure Embedded by DBCSRR for Suppression of Simultaneous Switching Noise," Progress In Electromagnetics Research C, Vol. 74, 9-17, 2017.
doi:10.2528/PIERC17021601
References

1. Qin, J. and O. M. Ramahi, "Ultra-wideband mitigation of simultaneous switching noise using novel planar electromagnetic bandgap structures," IEEE Microwave and Wireless Components Lette, Vol. 16, No. 9, 1531-1309, 2006.

2. Kwon, J. H., D. U. Sim, S. I. Kwak, and J. G. Yook, "Novel electromagnetic bandgap array structure on power distribution network for suppressing simultaneous switching noise and minimizing effects on high-speed signals ," IEEE Trans. Electromagn. Compat., Vol. 52, No. 2, 365-372, 2010.
doi:10.1109/TEMC.2010.2045894

3. Kim, S.-G., H. Kim, H.-D. Kang, and J.-G. Yook, "Signal integrity enhanced ebg structure with a ground reinforced trace," IEEE Transactions on Electronics Packing Manufacture, Vol. 55, No. 2, 373-380, 2010.

4. Zhang, M. S., Y. S. Li, C. Jia, et al. "A power plane with wideband SSN suppression using a multi-via electromagnetic bandgap structure," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 4, 307-309, 2007.
doi:10.1109/LMWC.2007.892992

5. Zhu, H., J. Li, and J. Mao, "Ultra-sideband suppression of SSN using localized topology with CSRRs and embedded capacitance in high-speed circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 2, 764-772, 2013.
doi:10.1109/TMTT.2012.2231695

6. De Paulis, F., M. Cracraft, C. Olivieri, S. Connor, A. Orlandi, and B. Archambeault, "EBG-based common-mode stripline filters: Experimental investigation on interlayer crosstalk," IEEE Trans. Electromagn. Compat., Vol. PP, No. 99, 19, Jul. 2015.

7. Anand, A., K. Shambavi, and Z. C. Alex, "Design Of UWB band pass filter with inter digitalcoupled lines and circular shaped EBG structure," International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE), 1-4, Mar. 6-8, 2014.

8. Gujral, M., J. L.-W. Li, T. Yuan, and C.-W. Qiu, "Bandwidth improvement of microstrip antenna array using dummy EBG pattern on feedline," Progress In Electromagnetics Research, Vol. 127, 79-92, 2012.
doi:10.2528/PIER12022807

9. Kim, S.-H., T. T. Nguyen, and J.-H. Jang, "Reflection characteristics of 1-D EBG ground plane and its application to a planar dipole antenna," Progress In Electromagnetics Research, Vol. 120, 51-66, 2011.
doi:10.2528/PIER11062909

10. Wu, T. L., S. T. Chert, J. N. Huang, and Y. H. Lin, "Numerical and experimental investigation of radiation caused by the switching noise on the partitioned dc reference planes of high speed digital PCB," IEEE Trans. Electromagn. Compat., Vol. 46, No. 1, 33-45, Feb. 2004.
doi:10.1109/TEMC.2004.823680

11. Wu, T. L., H. H. Chuang, and T. K. Wang, "Overview of power integrity solutions on package and PCB: Decoupling and EBG isolation," IEEE Trans. Electromagn. Compat., Vol. 52, No. 2, 346-356, May 2010.
doi:10.1109/TEMC.2009.2039575

12. Zhu, H.-R. and J.-F. Mao, "Localized planar EBG structure of CSRR for ultrawideband SSN mitigation and signal integrity improvement in mixed-signal systems," IEEE Trans. Compon. Packag., Manuf. Technol., Vol. 3, No. 12, 2092-2100, Dec. 2013.
doi:10.1109/TCPMT.2013.2272788

13. Yang, F.-R., K.-P. Ma, Y. Qian, and T. Itoh, "A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 8, 1509-1514, Aug. 1999.
doi:10.1109/22.780402

14. Li, L., B. Li, H.-H. Liu, and C.-H. Liang, "Locally resonant cavity cell model for electromagnetic bandgap structures," IEEE Trans. Antennas Propag., Vol. 54, No. 1, 90-100, Jan. 2006.
doi:10.1109/TAP.2005.861532

15. Rao, P. H. and M. Swaminathan, "A novel compact electromagnetic bandgap structure in power plane for wideband noise suppression and low radiation," IEEE Trans. Electromagn. Compat., Vol. 53, No. 4, 996-1004, Nov. 2011.
doi:10.1109/TEMC.2011.2156408

16. Shi, Y., W. Tang, S. Liu, X. Rao, and Y. L. Chow, "Ultra-wideband suppression of power/ground noise in high-speed circuits using a novel electromagnetic bandgap power plane," IEEE Trans. Compon. Packag., Manuf. Technol., Vol. 3, No. 4, 653-660, Apr. 2013.
doi:10.1109/TCPMT.2012.2235529

17. Yuan, H., L. Fang, C. Li, S. Bo, and W. Guan, "Signal integrity analysis of localized new EBG structure for ultra-wideband simultaneous switching noise suppression," 2014 3rd Asia-Pacific Conference on Antennas and Propagation (APCAP), 1444-1446, Jul. 26-29, 2014.

18. Bogatin, E., Signal and Power Integrity --- Simplified, 2nd Ed., Pretince Hall, NJ, 2009.

19. Kim, K. H. and J. E. Schutt-Aine, "Analysis and modeling of hybrid planar-type electromagnetic-bandgap structures and feasibility study on power distribution network applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 1, 178-186, Jan. 2008.
doi:10.1109/TMTT.2007.912199

20. Kim, K. H. and J. E. Schutt-Aine, "Design of EBG power distribution networks with VHF-band cutoff frequency and small unit cell size for mixed-signal systems," EEE Microwave and Wireless Components Letters, Vol. 17, No. 7, Jul. 2007.

21. De Paulis, F., L. Raimondo, and A. Orlandi, "IR-drop analysis and thermal assessment of planar electromagnetic bandgap structures for power integrity applications," IEEE Trans. Adv. Packag., Vol. 33, No. 3, 617-622, Aug. 2010.
doi:10.1109/TADVP.2009.2033572

22. Kim, T. H., D. Chung, E. Engin, W. Yun, Y. Toyota, and M. Swaminathan, " A novel synthesis method for designing electromagnetic bandgap (EBG) structures in packaged mixed signal systems," Proc. 56th Electron. Compon. Technol. Conf., 1645-1651, May 30-Jun. 2, 2006.