Vol. 69
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-10-26
Dynamic Wireless Charging for Roadway-Powered Electric Vehicles: a Comprehensive Analysis and Design
By
Progress In Electromagnetics Research C, Vol. 69, 1-10, 2016
Abstract
This paper presents a comprehensive analysis of the roadway powering system for electric vehicles (EVs) and proposes a design from the perspective of power track design, integration, and powering control strategy, aiming to ensure the charging power and persistence, enhance the control flexibility, and reduce the construction cost. 1) A novel design scheme is first proposed to determine the length and number of turns for power tracks by investigating the power supply-and-demand and the loss. 2) A novel evaluation index, namely the magnetic distribution variance, is proposed to determine the gap between adjacent tracks, which can effectively produce evenly-distributed energy field, thus improving the dynamic charging performance for EVs. 3) A sectional powering control strategy is proposed to implement a cost-saving and flexible roadway powering system. Lastly, the simulated and experimental results show that the exemplified prototype can achieve the transmission power 50W over the distance of 200 mm, which verifies the proposed EV dynamic charging system with the salient advantages of the constant energization, flexible power control, and cost saving.
Citation
Bin Deng, Bingnan Jia, and Zhen Zhang, "Dynamic Wireless Charging for Roadway-Powered Electric Vehicles: a Comprehensive Analysis and Design," Progress In Electromagnetics Research C, Vol. 69, 1-10, 2016.
doi:10.2528/PIERC16071106
References

1. Chau, K. T., Electric Vehicle Machines and Drives — Design, Analysis and Application, Wiley- IEEE Press, 2015.
doi:10.1002/9781118752555

2. Covic, G. A. and J. T. Boys, "Inductive power transfer," Proc. IEEE, Vol. 101, 1276-1289, 2013.
doi:10.1109/JPROC.2013.2244536

3. Guo, Y., L. Wang, and C. Liao, "Systematic analysis of conducted electromagnetic interferences for the electric drive system in electric vehicles," Progress In Electromagnetics Research, Vol. 134, 359-378, 2013.
doi:10.2528/PIER12092816

4. Poon, A. S. Y., "A general solution to wireless power transfer between two circular loop," Progress In Electromagnetics Research, Vol. 148, 171-182, 2014.
doi:10.2528/PIER14071201

5. Robichaud, A., M. Boudreault, and D. Deslandes, "Theoretical analysis of resonant wireless power transmission links composed of electrically small loops," Progress In Electromagnetics Research, Vol. 143, 485-501, 2013.
doi:10.2528/PIER13102306

6. Wang, C. S., O. H. Stielau, and G. A. Covic, "Design consideration for a contactless electric vehicle battery charger," IEEE Trans. Ind. Electron., Vol. 52, 1308-1313, 2005.
doi:10.1109/TIE.2005.855672

7. Budhia, M., J. T. Boys, G. A. Covic, and C. Y. Huang, "Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems," IEEE Trans. Ind. Electron., Vol. 60, 2013.
doi:10.1109/TIE.2011.2179274

8. Deng, J. J., F. Lu, S. Q. Li, T. D. Nguyen, and C. Mi, "Development of a high efficiency primary side controlled 7kW wireless power charger," Proceedings of IEEE International Electric Vehicle Conference, Vol. 16, 2014.

9. Hasanzadeh, S., S. V. Zadeh, and A. H. Isfahani, "Optimization of a contactless power transfer system for electric vehicles," IEEE Trans. Veh. Technol., Vol. 61, 3566-3573, 2012.
doi:10.1109/TVT.2012.2209464

10. Choi, S., J. Huh, W. Y. Lee, S. W. Lee, and C. T. Rim, "New cross-segmented power supply rails for roadway-powered electric vehicles," IEEE Trans. Power Electron., Vol. 28, 5832-5841, 2013.
doi:10.1109/TPEL.2013.2247634

11. Choi, S. Y., S. Y. Jeong, E. S. Lee, B. W. Gu, S. W. Lee, and C. T. Rim, "Generalized models on self-decoupled dual pick-up coils for large lateral tolerance," IEEE Trans. Power Electron., Vol. 30, 6434-6445, 2015.
doi:10.1109/TPEL.2015.2399938

12. Ibrahim, M., L. Pichon, L. Bernard, A. Razek, J. Houivet, and O. Cayol, "Advanced modeling of a 2-kW series–series resonating inductive charger for real electric vehicle," IEEE Trans. Veh. Technol., Vol. 64, 421-430, 2015.
doi:10.1109/TVT.2014.2325614

13. Albesa, J. and M. Gasulla, "Occupancy and belt detection in removable vehicle seats via inductive power transmission," IEEE Trans. Veh. Technol., Vol. 64, 3392-3401, 2015.
doi:10.1109/TVT.2014.2356443

14. Jeong, S., Y. J. Jang, and D. Kum, "Economic analysis of the dynamic charging electric vehicle," IEEE Trans. Power Electron., Vol. 30, 6368-6377, 2015.
doi:10.1109/TPEL.2015.2424712

15. Shun, J., S. Shin, Y. Kim, S. Ahn, S. Lee, G. Jung, S. J. Jeon, and D. H. Cho, "Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadwaypowered moving electric vehicles," IEEE Trans. Ind. Electron., Vol. 61, 1179-1192, 2013.
doi:10.1109/TIE.2013.2258294

16. Mutashar, S., M. A. Hannan, S. A. Samad, and A. Hussain, "Analysis and optimization of spiral circular inductive coupling link for bio-implanted applications on air and within human tissue," Sensors, Vol. 14, No. 7, 11522-11541, 2014.
doi:10.3390/s140711522

17. Covic, G. A. and J. T. Boys, "Morden trends in inductive power transfer for transportation applications," IEEE Trans. Emerging Sel. Topics Power Electron, Vol. 1, 2841, 2013.

18. Green, M., "How long does it take to stop? Methodological analysis of driver perception-brake times," Transportation Human Factors, Vol. 2, 195-216, 2000.
doi:10.1207/STHF0203_1