Vol. 65
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-06-21
DOA and Polarization Estimation Algorithm Based on the Virtual Multiple Baseline Theory
By
Progress In Electromagnetics Research C, Vol. 65, 45-56, 2016
Abstract
An algorithm of solving phase ambiguity of multi-baseline direction finding system based on sparse uniform circular array is proposed in this paper. This sparse uniform circular array whose inter-element spacing is larger than half-wavelength distance suffers from cyclic phase ambiguities, which may cause estimation errors. In order to solve the above phase ambiguities, the corresponding virtual short baselines are acquired by transforming the array element phases that meet with the contraction relationship. The obtained short baselines are used to solve the phase ambiguities according to the virtual baseline and stagger baseline theory. Highly accurate estimates of direction of arrival are herein acquired. Furthermore, the direction of arrival and polarization parameter estimates are automatically matched with no additional processing. The array arrangement problem in high frequency scenario is solved. The estimation accuracy of angle of arrival is improved by means of the phase ambiguity resolution. Simulation results verify the effectiveness of this algorithm.
Citation
Guibao Wang, Mingxing Fu, Feng Zhao, and Xiang Liu, "DOA and Polarization Estimation Algorithm Based on the Virtual Multiple Baseline Theory," Progress In Electromagnetics Research C, Vol. 65, 45-56, 2016.
doi:10.2528/PIERC16041705
References

1. Yuan, X., K. T. Wong, Z. Xu, and K. Agrawal, "Various compositions to form a triad of collocated dipoles/loops, for direction finding and polarization estimation," IEEE Sens. J., Vol. 12, No. 6, 1763-1771, 2012.
doi:10.1109/JSEN.2011.2179532

2. Wang, G., "A joint parameter estimation method with conical conformal CLD pair array," Progress In Electromagnetics Research C, Vol. 57, 99-107, 2015.

3. Li, Y. and J. Q. Zhang, "An enumerative nonlinear programming approach to direction finding with a general spatially spread electromagnetic vector sensor array," IEEE Trans. Signal Process., Vol. 93, 856-865, 2013.

4. Yuan, X., K. T.Wong, and K. Agrawal, "Polarization estimation with a dipole-dipole pair, a dipoleloop pair, or a loop-loop pair of various orientations," IEEE Trans. Antenn. Propag., Vol. 60, No. 5, 2442-2452, 2012.
doi:10.1109/TAP.2012.2189740

5. Luo, F. and X. Yuan, "Enhanced ‘vector-cross-product’ direction-finding using a constrained sparse triangular-array," EURASIP J. Adv. Signal Process., Vol. 2012, No. 115, 1-11, 2012.

6. Wang, L. M., Z. H. Chen, and G. B. Wang, "Direction finding and positioning algorithm with COLD-ULA based on quaternion theory," Journal of Communications, Vol. 9, No. 10, 778-784, 2014.
doi:10.12720/jcm.9.10.778-784

7. Nehorai, A. and E. Paldi, "Vector-sensor array processing for electromagnetic source localization," 25th Asilomar Conf. Signals, Syst., Comput., 566-572, Pacific Grove, CA, 1991.

8. Nehorai, A. and E. Paldi, "Vector sensor array processing for electromagnetic source localization," IEEE Trans. Signal Process., Vol. 42, No. 2, 376-398, 1994.
doi:10.1109/78.275610

9. Li, J., "Direction and polarization estimation using arrays with small loops and short dipoles," IEEE Trans. Antenn. Propag., Vol. 41, No. 3, 379-387, 1993.
doi:10.1109/8.233120

10. Li, J. and R. T. Compton, "Two-dimensional angle and polarization estimation using the ESPRIT algorithm," IEEE Trans. Antenn. Propag., Vol. 40, No. 5, 550-555, 1992.
doi:10.1109/8.142630

11. Wong, K. T. and M. D. Zoltowski, "Polarization diversity and extended aperture spatial diversity to mitigate fading-channel effects with a sparse array of electric dipoles or magnetic loops," IEEE Int. Veh. Technol. Conf., 1163-1167, 1997.

12. Wong, K. T. and M. D. Zoltowski, "High accuracy 2D angle estimation with extended aperture vector sensor arrays," Proc. IEEE. Int. Conf. Acoust., Speech, Signal Processing, Vol. 5, 2789-2792, 1996.

13. Wang, L. M., L. Yang, G. B. Wang, and Z. H. Chen, "Uni-vector-sensor dimensionality reduction MUSIC algorithm for DOA and polarization estimation," Math. Probl. Eng., Vol. 2014, 1-9, 2014.

14. Wong, K. T. and M. D. Zoltowski, "Uni-vector-sensor ESPRIT for multisource azimuth, elevation, and polarization estimation," IEEE Trans. Antenn. Propag., Vol. 45, No. 10, 1467-1474, 1997.
doi:10.1109/8.633852

15. He, J. and Z. Liu, "Extended aperture 2-D direction finding with a two-parallel-shape-array using propagator method," IEEE Antenn. Wirel. Pr., Vol. 8, 323-327, 2009.

16. Wong, K. T. and X. Yuan, "Vector cross-product direction-finding’ with an electromagnetic vectorsensor of six orthogonally oriented but spatially non-collocating dipoles/loops," IEEE Trans. Signal Process., Vol. 59, No. 1, 160-171, 2011.
doi:10.1109/TSP.2010.2084085

17. Song, Y., X. Yuan, and K. T. Wong, "Corrections to ‘vector cross-product direction-finding’ with an electromagnetic vector-sensor of six orthogonally oriented but spatially non-collocating dipoles/loops," IEEE Trans. Signal Process., Vol. 62, No. 4, 1028-1030, 2014.
doi:10.1109/TSP.2013.2290501

18. Zoltowski, M. D. and K. T. Wong, "Closed-form eigenstructure-based direction finding using arbitrary but identical subarrays on a sparse uniform rectangular array grid," IEEE Trans. Signal Process., Vol. 48, No. 8, 2205-2210, 2000.
doi:10.1109/78.852001

19. Wong, K. T. and M. D. Zoltowski, "Closed-form direction-finding with arbitrarily spaced electromagnetic vector-sensors at unknown locations," IEEE Trans. Antenn. Propag., Vol. 48, No. 5, 671-681, 2000.
doi:10.1109/8.855485

20. Wang, L. M., G. B. Wang, and Z. H. Chen, "Joint DOA-polarization estimation based on uniform concentric circular array," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 13, 1702-1714, 2013.
doi:10.1080/09205071.2013.823122

21. Liu, J., Z. Liu, and Q. Liu, "Direction and polarization estimation for coherent sources using vector sensors," Journal of Systems Engineering and Electronics, Vol. 24, No. 4, 600-605, 2013.
doi:10.1109/JSEE.2013.00070

22. Yuan, X., "Spatially spread dipole/loop quads/quints: For direction finding and polarization estimation," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1081-1084, 2013.
doi:10.1109/LAWP.2013.2280584

23. Zoltowski, M. D. and K. T. Wong, "ESPRIT-based 2D direction finding with a sparse array of electromagnetic vector-sensors," IEEE Trans. Signal Process., Vol. 48, No. 8, 2195-2204, 2000.
doi:10.1109/78.852000

24. Gavish, M. and A. J. Weiss, "Array geometry for ambiguity resolution in direction finding," IEEE Trans. Antenn. Propag., Vol. 44, No. 6, 889-895, 1996.
doi:10.1109/8.509893

25. Zhou, Y. Q. and F. K. Huang, "Solving ambiguity problem of digitized multi-baseline interferometer under noisy circumstance," Journal of China Institute of Communications, Vol. 34, No. 8, 16-21, 2005.

26. Wang, L. M., J. P. Lin, G. B. Wang, and Z. H. Chen, "A direction finding technique using millimeter-wave interferometer," J. Infrared Millim. W., Vol. 34, No. 2, 140-144, 2015.

27. Wu, Y. W., S. Rhodes, and E. H. Satorius, "Direction of arrival estimation via extended phase interferometry," IEEE Trans. Aero. Elec. Sys., Vol. 31, No. 1, 375-381, 1995.
doi:10.1109/7.366333

28. Wang, G. B., "Direction of arrival and polarization estimation with a polarized circular array," Journal of Beijing University of Posts and Telecommunications, Vol. 39, No. 2, 72-75, 2016.

29. Lomine, J., C. Morlaas, C. Imbert, and H. Aubert, "Dual-band vector sensor for direction of arrival estimation of incoming electromagnetic waves," IEEE Trans. Antenn. Propag., Vol. 63, No. 8, 3662-3671, 2015.
doi:10.1109/TAP.2015.2435039