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DOA and Polarization Estimation Algorithm Based on the Virtual
Multiple Baseline Theory

Guibao Wang1, *, Mingxing Fu1, Feng Zhao1, and Xiang Liu1, 2, 3

Abstract—An algorithm of solving phase ambiguity of multi-baseline direction finding system based
on sparse uniform circular array is proposed in this paper. This sparse uniform circular array whose
inter-element spacing is larger than half-wavelength distance suffers from cyclic phase ambiguities, which
may cause estimation errors. In order to solve the above phase ambiguities, the corresponding virtual
short baselines are acquired by transforming the array element phases that meet with the contraction
relationship. The obtained short baselines are used to solve the phase ambiguities according to the
virtual baseline and stagger baseline theory. Highly accurate estimates of direction of arrival are herein
acquired. Furthermore, the direction of arrival and polarization parameter estimates are automatically
matched with no additional processing. The array arrangement problem in high frequency scenario
is solved. The estimation accuracy of angle of arrival is improved by means of the phase ambiguity
resolution. Simulation results verify the effectiveness of this algorithm.

1. INTRODUCTION

Electromagnetic vector sensor array can obtain multi-dimensional information of electromagnetic signal,
and it herein has the ability of spatial and polarization domain signal processing. The direction of
arrival (abbreviated DOA) and polarization parameter estimations of multiple narrowband signals using
electromagnetic vector sensor array techniques have a crucial role to play in many applications involving
communication, radio astronomy, radar, sonar, seismic sensing, etc., and many valuable research results
have been obtained [1–29]. Electromagnetic vector sensor can be divided into two categories: complete
electromagnetic vector sensor (namely six-component electromagnetic vector sensor) and incomplete
electromagnetic vector sensor (namely the antenna number of electromagnetic vector sensor is less
than six). Particularly, the collocated loop and dipole pair has good performance because its antenna
elements are not sensitive to the signal direction of arrival, which can decouple the polarization from
direction of arrival [1–6].

A subspace algorithm to estimate direction of arrival and polarization by exploiting complete
electromagnetic vector sensor was first proposed in [7–9]. Li and Compton [10] first applied estimations
of signal parameters via rotational invariance techniques (abbreviated ESPRIT) to a vector-sensor array,
and “vector-cross-product” DOA estimator was first applied to ESPRIT in [11, 12]. The uni-vector-
sensor multiple signal classification (abbreviated MUSIC) algorithms were proposed in [13, 14]. Ref. [15]
proposed an efficient two-dimensional direction finding method for improving estimation accuracy via
aperture extension using the propagator method. The spread six-component electromagnetic vector-
sensor direction-finding algorithms were proposed in [16, 17], which extended the spatial aperture at
lower hardware cost. Ref. [18] proposed a novel disambiguation method using a MUSIC-like procedure to
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identify the true direction cosine estimate from a set of cyclically related ambiguous candidate estimates.
A novel closed-form ESPRIT-based algorithm using arbitrarily spaced electromagnetic vector-sensors
was proposed in [19].

To ensure unambiguous angle estimations, it is required that the array inter-sensor spacing is less
than half wavelength. However, the extended array aperture can offer enhanced array resolution but
will cause the phase ambiguity of angle estimates. Therefore, resolving the phase ambiguity of array
aperture extension is important [20–22], and the contribution of some work lies in that direction. Wang
and co-authors proposed a DOA and polarization joint estimation method based on uniform concentric
circular array [20], in which the phase differences between two array elements on inner circle were used
to give rough but unambiguous estimates of DOA and as coarse references to disambiguate the cyclic
phase ambiguities in phase differences between two array elements on outer ring circle. In [21], a two-
dimensional DOA and polarization estimation algorithm for coherent sources using a linear vector-sensor
array is presented. Yuan put forward the direction finding and polarization estimation method by using
the spatially spread dipole/loop quads/quints in literature [22]. A 2-D direction finding algorithm with
a sparse uniform array was introduced in [23], and the disambiguation of the resulting cyclic ambiguities
was accomplished by the use of arrival angle information.

In this paper, we present a new phase ambiguity resolution approach based on the virtual
multiple baseline theory [24–27]. The estimated phase differences are implemented by virtual array
transformation when the phase differences of array elements satisfy certain conditions, and the
ambiguous phase differences are herein resolved. The unambiguous but coarse phase differences are
used to disambiguate the true phase differences of original array.

2. SIGNAL AND ARRAY MODELS

The receiving uniform circular array is composed of M identical collocated loop and dipole pair, whose
antenna elements are distributed over a circle with radius R. Supposing that the center of circle is
located at the origin, the reference element of the array is a collocated loop and dipole, which is placed
at origin, and the whole array elements are placed in the x-y plane, as shown in Fig. 1.

The collocated loop and dipole pairs’ steering vector of the kth (1 ≤ k ≤ K) unit-power
electromagnetic source signal is 2 × 1 vector as follows:[

ekz

hkz

]
=
[
− sin θk sin γke

jηk

sin θk cos γk

]
(1)

where θk ∈ [0, π/2] is the signal’s elevation measured from the positive z-axis; γk ∈ [0, π/2] symbolizes
the auxiliary polarization angle; ηk ∈ [−π, π] represents the polarization phase difference. hkz and ekz

denote the z-axis magnetic and electric field received by loop and dipole at the origin of the coordinates.
K (K < M) narrowband completely polarized electromagnetic plane wave source signals from far-

field impinge upon an array, and the output of the uniform circular array at time t can be written
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Figure 1. Uniform circular collocated loop and dipole array geometry.
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compactly as

X(t) =
[

B1

B2

]
S(t) + N(t) = BS(t) + N(t) (2)

where X(t) is the received signal, B the (2M +2)×K array manifold matrix for the K incident signals,
S(t) the incident signal and N(t) the noise. B1 and B2 are respective the sub-array steering vectors of
M + 1 loops and M + 1 dipoles, which can be represented as

B1 = [sin θ1 cos γ1q (θ1, φ1) , . . . , sin θK cos γKq (θK , φK)] (3)
B2 =

[− sin θ1 sin γ1e
jη1q (θ1, φ1) , . . . ,− sin θK sin γKejηKq (θK , φK)

]
(4)

where
q (θk, φk) =

[
1, ejϕk,1 , . . . , ejϕk,m , ejϕk,M

]
(5)

with the phase difference between the mth element and reference element of array ϕk,m defined in
Eq. (6).

ϕk,m =
2πR

λk
sin θk cos (φk − ϕm) (6)

where ϕm = 2π(m − 1)/M , m = 1, . . . ,M determines the angular location of antenna m on the circle,
and φk ∈ [−π, π] denotes the signal’s azimuth measured from the positive x-axis.

The true phase differences between the M elements and reference element of array can be obtained:

Φk = [ϕk,1, . . . , ϕk,m, . . . , ϕk,M ] =
2πR

λk
W1Γk (7)

where W1 is the matrix whose elements are involved in the array element angular position information,
so we call W1 as angular position information matrix. Γk is the vector whose elements are composed
of the direction cosine information. W1 and Γk have the following form:

W1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1

sin
(

2π
M

)
cos
(

2π
M

)
...

...

sin
[
(M − 1)

2π
M

]
cos
[
(M − 1)

2π
M

]

⎤
⎥⎥⎥⎥⎥⎥⎦

, Γk =
[

sin θk sin φk

sin θk cos φk

]
(8)

From formulas (3) and (4), the following relationship can be obtained:

B2 = B1Φ (9)
where

Φ =

⎡
⎢⎣

− tan γ1e
jη1

. . .
− tan γKejηK

⎤
⎥⎦ (10)

3. DOA AND POLARIZATION ESTIMATION ALGORITHM

3.1. Polarization and Phase Difference Estimation Model

The covariance matrix Rx can be written as

Rx = E
[
XXH

]
= BRsBH + σ2I (11)

where Rs denotes the correlation matrix of incident signals and σ2 the white noise power. Let Es

represent the (2M + 2) × K matrix composing of the K eigenvectors corresponding to K largest
eigenvalues of Rx. According to the subspace theory, there exists K × K nonsingular matrix T, and
the signal subspace can be represented explicitly as [14]

Es = BT =
[

B1

B2

]
T E1 = B1T E2 = B2T = B1ΦT (12)
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Since both E1 and E2 are column full-rank, there is a unique nonsingular matrix Ω such that

E1Ω = E2 ⇒ Ω =
(
EH

1 E1

)−1
EH

1 E2 (13)

ΩT−1 = T−1Φ (14)

It can be seen from Equation (14) that the estimation of Φ, namely Φ̂, consists of K eigenvalues
of matrix Ω, and the full-rank matrix T−1 is composed of K eigenvectors of matrix Ω.

From matrix Φ̂, the auxiliary polarization angle and polarization phase difference are obtained:

γ̂k = tan−1
(∣∣∣Φ̂k,k

∣∣∣) η̂k = arg
(
−Φ̂k,k

)
(15)

The estimates of B, B1 and B2 can be obtained by

B̂1 = E1T̂−1 B̂2 = E2T̂−1 B̂ = EsT̂−1 (16)

The estimate of spatial steering vector q̂ (θk, φk) is obtained from the normalized B̂1:

q̂ (θk, φk) =
B̂1 (2 : M + 1, k)

B̂1 (1, k)
(17)

From formula (17), the estimated phase difference between the M elements and reference element
of array can be obtained:

Φ̂k = arg [q̂ (θk, φk)] = [ϕ̂k,1, . . . , ϕ̂k,m, . . . , ϕ̂k,M ] (18)

where ϕ̂k,m is the estimated value of phase difference ϕk,m.
The sparse uniform circular array whose radius is larger than half maximum wavelength will suffer

from phase ambiguities, that is to say, the estimated phase differences matrix Φ̂k and true phase
differences matrix Φk meet the following relationship:

Φk = Φ̂k + 2πpk (19)

where pk = [pk1, pk2, . . . , pkM ] is the phase ambiguity vector. In order to obtain the exact direction of
arrival information, vector pk should be acquired.

3.2. Virtual Transformation and Phase Ambiguity Resolution

The virtual element of the array can be obtained by executing virtual transformations on two true
array-elements. The phase difference between the kth virtual element and reference element of array
can be expressed as follows:

ϕ̂k,n + ϕ̂k,m =
2πR

λk
sin θk [cos (φk − ϕn) + cos (φk − ϕm)]

=
2π
{
2R cos

[
π
M (m − n)

]}
λk

sin θk cos
[
φk −

(
m + n

2
− 1
)
· 2π
M

]
(20)

From Equations (6) and (20), the radius of the virtual circular array becomes R(1) =
2R cos [π (m − n) /M ] after one time virtual array transformation. The necessary condition for the
operation of virtual array transformation is that R(1) is less than R.

According to the relationship of R(1) and R, it can be obtained:

0 < cos [π(m − n)/M ] <
1
2

(21)

According to formula (21), the relationship of m and n can be obtained:

M/3 < m − n < M/2 or M/3 < n − m < M/2 (22)

The relationship of phase difference matrix before and after L times of virtual array transformation
can be summarized as follows.
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3.2.1. The Case of Same Angular Position Information Matrix

When i = (m + n) /2 is integer, after one virtual array transformation, the phase difference matrix
between the virtual M -element and reference element of array can be expressed as:

Φ̂(1)
k =

[
ϕ̂

(1)
k,1, ϕ̂

(1)
k,2, . . . , ϕ̂

(1)
k,M

]
(23)

where ϕ̂
(1)
k,i is the phase difference between the ith (i = 1, . . . ,M) virtual element and reference element

of array, with

ϕ̂
(1)
k,i = ϕ̂k,n + ϕ̂k,m =

2πR(1)

λk
sin θk cos

[
φk − (i − 1) · 2π

M

]
(24)

From formula (24), there exists the following relationship:

Φ̂
(1)
k = T(1)

k Φ̂k (25)

where T(1)
k is the first time virtual array transformation matrix whose elements come from Equation (24).

Since there exist phase ambiguities in Φ̂
(1)
k , the virtual array transformation needs to be done,

provided that the virtual circular radius is larger than incident signal half wavelength. Suppose that
the virtual circular radius R(L) is less than incident signal half wavelength after implementing L times
virtual array transformations, that is to say, R(L) < λk/2. According to formulas (6) and (20), the
following expression is obtained:

R(L) = R

[
2 cos

π(m − n)
M

]L

(26)

Suppose that the phase difference matrix and virtual transformation matrix after L times virtual
transformations are labeled as Φ̂

(L)
k and T(L)

k , then the following relationship can be obtained:

Φ̂
(L)
k = T(L)

k Φ̂
(L−1)
k =

(
T(1)

k

)L
Φ̂k (27)

with Φ̂
(L)
k =

[
ϕ̂

(L)
k,1 , ϕ̂

(L)
k,2 , . . . , ϕ̂

(L)
k,M

]T
.

The matrices Φ̂(L)
k and R(L) also have the following form:

Φ̂(L)
k =

2πR(L)

λk
W1Γ̂k (28)

where Γ̂k =
[
sin θ̂k sin φ̂k, sin θ̂k cos φ̂k

]T
is the coarse and unambiguous estimation of direction cosine,

and W1 is defined in Equation (8). Since R(L) < λk/2, there does not exist phase ambiguity in Φ̂
(L)
k ,

that is to say, the elements ϕ̂
(L)
k,i in Φ̂(L)

k are in the range of −π to π, with 1 ≤ i ≤ M .
Based on the foregoing analysis, the following relationship can be obtained:

Φ̂(L)
k = T(L)

k Φ̂
(L−1)
k =

(
T(1)

k

)L
Φ̂k =

2πR(L)

λk
W1Γ̂k (29)

The angular position information matrices of virtual and true circular arrays are the same, but the
radii of the two arrays are different.

3.2.2. The Case of Different Angular Position Information Matrix

When i = (m + n) /2 is non-integer, let d′ = (m + n + 1)/2, and d′ is the sequence number of the
virtual array. After one time virtual array transformation, the phase difference matrix between the
virtual M -element and reference element of array can be represented as:

Φ̂
(1)
k =

[
ϕ̂

(1)
k,1, ϕ̂

(1)
k,2, . . . , ϕ̂

(1)
k,M

]
(30)
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where ϕ̂
(1)
k,d′ is the phase difference between the d′th (d = 1, . . . ,M) virtual element and reference element

of array, with

ϕ̂
(1)
k,d′ = ϕ̂k,n + ϕ̂k,m =

2πR(1)

λk
sin θk cos

[
φk −

(
d′ − 1

2

)
· 2π
M

]
(31)

From formula (31), there exists the following relationship:

Φ̂(1)
k = Tk1Φ̂k (32)

where Tk1 is the first time virtual array transformation matrix whose elements are derived from
Equation (31), and Φ̂(1)

k is the phase difference matrix after the first time virtual array transformation.
The relation of Φ̂(1)

k and R(1) can also be represented in matrix notation as follows:

Φ̂(1)
k =

2πR(1)

λk
W2Γ̂k (33)

where W2 is the matrix whose elements denote the angular position information, i.e.,

W2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sin
( π

M

)
cos
( π

M

)
sin
(

3π
M

)
cos
(

3π
M

)
...

...
sin
[
(2M − 1)

π

M

]
cos
[
(2M − 1)

π

M

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(34)

From formulas (8) and (34), we can see that the matrix W1 is different from W2.
After two times of virtual array transformations, the phase differences can be expressed as follows:

ϕ̂
(2)
k,d′′ = ϕ̂

(1)
k,n′ + ϕ̂

(1)
k,m′ =

2πR(2)

λk
sin θk cos

[
φk − (d′′ − 1

) · 2π
M

]
(35)

where m′ and n′ are the sequence numbers after one virtual transformation. Since i′ = (m′ + n′) /2 is
non-integer, d′′ = (m′ + n′ − 1)/2 is integer. Furthermore, the phase differences ϕ̂

(2)
k,d′′ in Eq. (35) have

the same form as ϕ̂
(1)
k,i in Eq. (24).

Equation (35) can be indicated with the following matrix form:

Φ̂
(2)
k =

2πR(2)

λk
W1Γk (36)

Formula (35) can also be represented by the following matrix form

Φ̂
(2)
k = Tk2Φ̂

(1)
k = Tk2Tk1Φ̂k (37)

where Tk2 and Φ̂(2)
k are the virtual array transformation matrix and phase difference matrix after two

times of virtual array transformation, which are determined by formula (35). Based on the above-
mentioned analysis, it can be shown that the virtual angular position information matrix is the same
as the true angular position information matrix after two times of virtual transformations. Meanwhile,
the radii of the virtual circular array and initial circular arrays are different.

The true phase difference matrix can be obtained if R(1) or R(2) is less than incident signal half
wavelength. Otherwise, Φ̂

(1)
k or Φ̂

(2)
k has phase ambiguities, and the virtual transformation herein needs

to be continued until the virtual circular radius is less than incident signal half wavelength. Supposing
that R(L) defined in formula (26) is less than half wavelength of the incident signal after conducting

L times virtual transformations, the corresponding phase difference matrix is labeled as Φ̂
(L)
k , where L

is the minimal positive integer that meets Equation (26). To obtain the phase difference matrix, two
cases of virtual transformation are discussed. In the two possible conditions,
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1) The number of virtual array transformation times L is odd, and the relation between Φ̂(L)
k and Φ̂k

are summarized as follows:

Φ̂
(L)
k =

2πR
(L)
k

λk
W2Γ̂k = Tk1 (Tk2Tk1)

L−1
2 Φ̂k (38)

where L is the minimal positive even number that meets R(L) < λk/2, and R(L) has the form in
Equation (26). Φ̂k is the original phase difference matrix.

2) The number of virtual array transformation times L is even, and the relation between Φ̂(L)
k and

Φ̂k are summarized as follows:

Φ̂(L)
k =

2πR
(L)
k

λk
W1Γ̂k = (Tk2Tk1)

L
2 Φ̂k (39)

3.3. Phase Ambiguity Resolution in Direction Finding

According to Equations (29), (38) and (39), we get the coarse and unambiguous estimate Γ̂k:

Γ̂k = W#Φ̂
(L)
k = W#T(L)

k Φ̂ (40)

where W# =
(
WHW

)−1 WH is a pseudo-inverse matrix of W, with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

W =
2πR

(L)
k

λk
W1, T(L)

k = (Tk)
L when

m + n

2
and L are intergers

W =
2πR

(L)
k

λk
W2, T(L)

k = Tk1 (Tk2Tk1)
L−1

2 when
m + n

2
is non-interger, L is odd number

W =
2πR

(L)
k

λk
W1, T(L)

k = (Tk2Tk1)
L
2 when

m + n

2
is non-interger, L is even number

.

By substitution of Eq. (40) into Eq. (41), the coarse but unambiguous estimations of the true phase
difference matrix Φ̄ are obtained as follows:

Φ̄k =
2πR

λk
W1Γ̂k (41)

From formulas (19) and (41), a method is developed for solving the phase cycle number ambiguity
vector pk, opt, and this problem is formulated as the optimization procedure:

pk, opt = arg min
pk

∣∣∣Φ̄k −
(
Φ̂k + 2πpk

)∣∣∣ (42)

From Eq. (42), the estimates of true phase difference matrix Φ̃ can be obtained as:

Φ̃k = Φ̂k + 2πpk, opt (43)

Here Φ̃ is the high-precision estimation.
According to Equations (7) and (43), it is shown that

Φ̃k = EkΓ̃k (44)

where

Ek =
2πR

λk
W1 Γ̃k =

[
Γ̃k1

Γ̃k2

]
=
[

sin θ̃k sin φ̃k

sin θ̃k cos φ̃k

]
(45)

The accurate direction cosine estimates are obtained by employing the least square norm:

Γ̃k =
[

Γ̃k1

Γ̃k2

]
=
[

sin θ̃k sin φ̃k

sin θ̃k cos φ̃k

]
= E#

k Φ̃k (46)
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where E#
k =

(
EH

k Ek

)−1 EH
k is a pseudo-inverse matrix of Ek.

According to formula (46), the accurate estimates of direction of arrival are obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ̃k = arcsin
√

Γ̃2
k1 + Γ̃2

k2⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ̃k = arctan

(
Γ̃k1

Γ̃k2

)
, Γ̃k2 ≥ 0

φ̃k = π + arctan

(
Γ̃k1

Γ̃k2

)
, Γ̃k2 < 0

(47)

Our proposed virtual transformation method for estimating the direction of arrival and polarization
parameters can herein be summarized as follows.

1) Measure the phase differences Φ̂k between the array element and the origin of coordinate, and Φ̂k

is ambiguous.

2) The matrix Φ̂
(L)
k whose phase difference is unambiguous, and the coarse estimates of direction

cosine Γ̂k are obtained according to the virtual transformation Equation (40).
3) The number of phase cycle ambiguities of the true phase difference matrix is acquired according

to formula (42), thus the true phase difference matrix Φ̃k is achieved, and the DOA estimates are
herein obtained.

4. SIMULATION RESULTS

In this section, the direction of arrival and polarization parameter estimation experiments are carried
out to verify the effectiveness of the proposed method. Incident signal source with parameters
(θ1, φ1, γ1, η1) = (28◦, 45◦, 65◦, 78◦) and (θ2, φ2, γ2, η2) = (72◦, 85◦, 35◦, 120◦) impinge upon a sparse
7-element uniform circular array with a radius of R = 3.5λ, as shown in Fig. 1. 200 independent Monte
Carlo trials and 512 temporal snapshots are used in these simulations. The simulation results are shown
in Figs. 2–8.

In the first experiment, we consider the scatter diagrams of elevation and azimuth. The signal-to-
noise ratio (abbreviated SNR) is set to 15 dB, and the sets of values of the DOA variables have been
represented in Figs. 2 and 3.

The true values of direction of arrival are (θ1, φ1) = (28◦, 45◦) and (θ2, φ2) = (72◦, 85◦). From
Fig. 3, we can see that the perturbation of the estimated values using virtual array is small, and
the estimated values of direction of arrival, namely θ̂1 and φ̂1, are respectively the numerical ranges
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Figure 4. RMSE of elevation versus SNR.
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Figure 5. RMSE of azimuth versus SNR.

θ̂1 ∈ (27.9◦, 28.1◦) and φ̂1 ∈ (44.85◦, 45.15◦). Similarly, the estimated values of θ̂2 and φ̂2 are respectively
the numerical ranges θ2 ∈ (71.8◦, 72.2◦) and φ2 ∈ (84.8◦, 85.2◦). On the contrary, using the original
array the estimated points of azimuth are wrongly distributed in the ranges of φ1 ∈ (−7.75◦,−7.65◦)
and φ2 ∈ (−46.7◦,−47.3◦), and the estimated points of elevation are wrongly distributed in the ranges
of θ1 ∈ (4.16◦, 4.18◦) and θ2 ∈ (3.48◦, 3.52◦), as shown in Fig. 2.

In the second experiment, we consider the performance of the estimations of DOA and polarization.
Without loss of generality, we discuss only the signal one. The root mean square error (abbreviated
RMSE) of the DOA and polarization variables are represented in Figs. 4–7, and the SNR ranges in Figs.
4-7 are from 0 dB to 50 dB.

Figure 4 shows that the RMSE of elevation using original array is 27.55◦. The RMSE of elevation
using the virtual array is 0.053◦ at SNR = 0. Moreover, the RMSE of elevation decreases evidently as
the SNR increases. Similarly, the RMSEs of azimuth using the original and virtual array are indicated
in Fig. 5, and the RMSE of azimuth using the original array is 69◦. In the SNR range (namely, at or
above 0 dB), the RMSE of azimuth is degraded significantly using the virtual array, and the RMSE of
azimuth is 0.09◦ at SNR = 0. The reason that the estimation using original array has larger deviation is
as follows: the existence of phase ambiguity makes the estimates have larger deviation, which cannot be
overcome even if improving the SNR. The virtual transform processing can effectively solve the problem
of phase ambiguity. Hence the precise estimates of DOA can be obtained.

Figures 6–7 respectively plot the estimation RMSE of polarization phase difference and auxiliary
polarization angle, respectively estimated using the virtual array and original array, at various SNR
levels. The two estimated results are nearly the same because the sparse embattle of uniform circular
array has little influence on polarization phase difference and auxiliary polarization angle.

In Figs. 4 and 5, the RMSE using the original array is plotted as the horizontal line, because
the phase ambiguities exist, and then the estimates have larger deviations. For example, the average
estimated value of elevation using the original array is 28◦ and the corresponding average estimated
values of azimuth is 69◦. The disturbances of all the estimated values appear around the average
estimated values. The disturbances grow smaller and smaller with the increase of SNR, which is too
small relative to the average deviation to be shown in Figs. 4 and 5.

In order to further illustrate the above issues, in the following experiment, we consider the
performance of standard deviation estimations of direction of arrival. The SNR ranges from 0 dB
to 50 dB, and the standard deviation of elevation is shown in Fig. 8. From Fig. 8 it is shown that the
estimation performances of elevation using the original and virtual array both beome better and better
with the increase of SNR. However, Fig. 8 shows that the estimated value gets closer and closer to a
certain value. From Figs. 2 and 3, we can see that this certain value described above is 4.17◦. By
contrast, the value of the actual elevation value is 28◦. The simulation and discussion for the azimuth
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Figure 6. RMSE of polarization phase difference
versus SNR.
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versus SNR.

are similar to that of the elevation.
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Figure 8. Standard deviation of elevation versus SNR.

5. CONCLUSION

A new algorithm for estimating DOA and polarization using sparse uniform circular collocated loop and
dipole array is proposed in this paper. The process of phase ambiguity resolution of DOA estimation
can be summarized as follows. In the first step, the array elements whose phases satisfy the contraction
transformation condition are acquired, and the phase differences between these array elements and the
origin of coordinates are herein obtained. In the second step, the virtual transformations are done to
the obtained phase differences, and the short baselines are herein obtained. These short baselines are
used to solve the phase ambiguity of long baseline. Finally, according to the position matrix before and
after the virtual transformation, the high-precision DOA estimations are obtained using the least square
method. The new method not only solves the phase ambiguity of DOA estimation of sparse array, but
also obtains a high-precision DOA estimation performance.
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