Vol. 64
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-05-06
A Study of Composite Substrates for VHF and UHF Artificial Magnetic Conductors and Their Application to a SATCOM Antenna
By
Progress In Electromagnetics Research C, Vol. 64, 1-9, 2016
Abstract
The bandwidth of artificial magnetic conductor structures based on the square patch geometry has been significantly increased by using composite ferrite particles. These magnetic composites are non-conducting materials which achieve extraordinarily high values of magnetic permeability in the VHF and UHF range. Two AMC designs are presented for two different bands: the lower VHF and the VHF/UHF bands. To realize the ultra-high bandwidth for those ranges two particular materials were considered; nickel zinc and bismuth strontium titanate based ferrites. The AMCs were designed and modeled via numerical simulations using real material parameters as reported in literature. A cross-dipole radiator was integrated with the AMC to create a wideband directive antenna for SATCOM applications.
Citation
Taulant Rexhepi, and David Crouse, "A Study of Composite Substrates for VHF and UHF Artificial Magnetic Conductors and Their Application to a SATCOM Antenna," Progress In Electromagnetics Research C, Vol. 64, 1-9, 2016.
doi:10.2528/PIERC16030409
References

1. Kern, D. J. and D. H. Werner, "Magnetic loading of EBG AMC ground planes and ultrathin absorbers for improved bandwidth performance and reduced size," Microwave and Optical Technology Letters, Vol. 48, No. 12, 2468-2471, 2006.
doi:10.1002/mop.21972

2. Zhou, H., M. Jong, and G. Lo, "Evolution of satellite communication antennas on mobile ground terminals," International Journal of Antennas and Propagation, 2015.

3. Sievenpiper, D., et al. "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory and Tech., Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

4. Diaz, R., "Magnetic loading of artificial magnetic conductors for bandwidth enhancement," EEE Antennas and Propagation Society International Symposium, Vol. 2, 2003.

5. Suraperwata, A. V., L. Olivia, and A. Munir, "Inductance and capacitance reformulation of square patch-based artificial magnetic conductor," Proc. 7th International Conference on Telecommunication Systems, Services, and Applications (TSSA), 187-191, 2012.

6. Diaz, R. E. and S. A. Clavijo, "Artificial magnetic conductor," Encyclopedia of RF and Microwave Engineering, 2005.

7. Rexhepi, T. and D. Crouse, "Ultra-wide band metasurface for low-profile RF antenna applications based on high-Mu low-epsilon composites," Proc. 6th International Conference on Metamaterials, Photonic Crystals and Plasmonics, META’15, 596, 2015.

8. Su, H., et al. "Low-loss magneto-dielectric materials: Approaches and developments," Journal of Electronic Materials, Vol. 43, No. 2, 299-307, 2014.
doi:10.1007/s11664-013-2831-5

9. Petrov, R. V., et al. "Antenna miniaturization with ferrite ferroelectric composites," Microwave and Optical Technology Letters, Vol. 50, No. 12, 3154-3157, 2008.
doi:10.1002/mop.23939

10. Rexhepi, T., et al. "Low profile UHF/VHF metamaterial backed circularly polarized antenna structure," Progress In Electromagnetics Research C, Vol. 60, 11-2020, 2015.
doi:10.2528/PIERC15090906

11. Zimmerman, M. L., I. E. Timofeev, and L. Wu, "Tri-pole antenna element and antenna array," U.S. Patent, No. 9, 077,070, 2015.

12. Oetting, J. D. and T. Jen, "The mobile user objective system," Johns Hopkins Apl. Technical Digest, Vol. 30, No. 2, 103-112, 2011.

13. Hill, M. D., "Specialty materials processing techniques for enhanced resonant frequency hexaferrite materials for antenna applications and other electronic devices," U.S. Patent, No. 8, 609,062, 2013.