1. Steer, M. B., J. W. Bandler, and C. M. Snowden, "Computer-aided design of RF and microwave circuits and systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 3, 996-1005, March 2002.
doi:10.1109/22.989983
2. Azaro, R., A. Massa, M. Donelli, et al. "Unsupervised synthesis of microwave components by means of an evolutionary-based tool exploiting distributed computing resources," Electromagnetic Waves, Vol. 56, 93-108, 2006, DOI: 10.2528/PIER05010901.
3. Rukanuzzaman, M. D., M. Donelli, and C. Saavedra, "A methodology for the design of microwave systems and circuits using an evolutionary algorithm," Progress In Electromagnetics Research M, Vol. 31, 129-141, 2013.
4. Doneli, M., C. Saavedra, and M. Rukanuzzaman, "Design and optimization of a broadband xband bidirectional amplifier," IEEE Microwave and Wireless Components Letters, Vol. 55, No. 7, 1730-1735, 2013.
5. Kwak, M., D. F. Kimball, C. D. Presti, et al. "Design of a wideband high-voltage high-efficiency BiCMOS envelop amplifier for micro-base-station RF power amplifiers," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 6, 1850-1861, 2012.
doi:10.1109/TMTT.2012.2184128
6. Rieh, J.-S., B. Jagannathan, D. R. Greenberg, et al. "SiGe heterojunction bipolar transistor and circuits towards terahertz communication apllications," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 10, 2390-2408, 2004.
doi:10.1109/TMTT.2004.835984
7. Kerherve, E., N. Demirel, et al. "A broad and 4.5–15.5-GHz SiGe power amplifier with 25.5-dBm peak saturated output power and 28.7% maximum PAE," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 5, 1621-1632, 2015.
doi:10.1109/TMTT.2015.2415490
8. Li, Y., J. Lopez, et al. "Circuits and system design of RF polar transmitters using envelope-tracking and SiGe power amplifiers for mobile WiMAX," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 58, No. 5, 893-901, 2011.
doi:10.1109/TCSI.2010.2089562
9. Jung, J., G. Lee, et al. "A SiGe HBT power amplifier with integrated mode control switches for LTE applications," 2013 IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 138-140, 2013.
doi:10.1109/SiRF.2013.6489458
10. Yoshimasu, T., M. Akagi, et al. "An HBT MMIC power amplifier with an integrated diode linearizer for low-voltage portable phone applications," IEEE J. Solid State Circuits, Vol. 33, No. 9, 1290-1296, 1998.
doi:10.1109/4.711326
11. Noh, Y. S. and C. S. Park, "PCS/W-CDMA dual band MMIC power amplifier with a newly proposed linearizing bias circuit," IEEE J. Solid-State Circuits, Vol. 37, No. 9, 1096-1099, 2002.
12. Fujita, K., K. Shirakawa, et al. "A 5GHz high efficiency and low distortion InGaP/GaAs HBT power amplifier MMIC," IEEE MTT-S Microwave Symp. Dig., 871-874, 2003.
13. Kim, J. H., J. H. Kim, et al. "High linear HBT MMIC power amplifier with partial RF coupling to bias circuit for W-CDMA portable application," Proceeding of 3rd International Conference on Microwave and Millimeter Wave Technology, 809-812, 2002.
doi:10.1109/ICMMT.2002.1187824
14. Kim, J. H., J. H. Kim, et al. "Linearised HBT MMIC power amplifier with partially RF coupled active bias circuit for W-CDMA portable terminals applications," Electronics Letters, Vol. 39, No. 10, 781-783, 2003.
doi:10.1049/el:20030506
15. Kim, J. H., J. H. Kim, et al. "A low quiescent current 3.3V operation linear MMIC power amplifier for 5 GHz WLAN applications," IEEE MTT-S Microwave Symp. Dig., 867-870, 2003.
16. Hua, W.-C., H.-H. Lai, et al. "High-linearity and temperature-insensitive 2.4GHz SiGe power amplifier with dynamic-bias control," IEEE Radio Frequency Integrated Circuit Symposium, 609-612, 2005.
17. Zhang, S., J. Su, L. Chen, et al. "A fully integrated, highly linear SiGe BiCMOS class-AB power amplifier targeting 2.4 GHz applications," Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), 275-278, 2010.
18. Huang, C.-C. and W.-C. Lin, "A compact high-efficiency CMOS power amplifier with built-in linearizer," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 9, 587-589, 2009.
doi:10.1109/LMWC.2009.2027093
19. Eiji, T., T. Ikushima, K. Itoh, et al. "A dual bias-feed circuit design for SiGe HBT low-noise linear amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 2, 414-421, 2003.
doi:10.1109/TMTT.2002.807835
20. Li, Y., J. Lopez, D. Y. C. Lie, et al. "A broadband SiGe power amplifier in an efficient polar transmitter using envelope-tracking for mobile WiMAX," 2011 IEEE 11th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 137-140, 2011.
21. Liao, H.-H., H. Jiang, P. Shanjani, et al. "A fully integrated 2 × 2 power amplifier for dual band MIMO 802.11n WLAN application using SiGe HBT technology," IEEE Journal of Solid-State Circuits, Vol. 44, No. 5, 1361-1371, 2009.
doi:10.1109/JSSC.2009.2015817
22. Wang, F., D. F. Kimball, D. Y. Lie, et al. "A monolithic high-efficiency 2.4-GHz 20-dBm SiGe BiCMOS envelope-tracking OFDM power amplifier," IEEE Journal of Solid-State Circuits, Vol. 42, No. 6, 1271-1279, 2007.
doi:10.1109/JSSC.2007.897170