Vol. 57
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-05-11
A Joint Parameter Estimation Method with Conical Conformal CLD Pair Array
By
Progress In Electromagnetics Research C, Vol. 57, 99-107, 2015
Abstract
A novel direction of arrival (DOA) and polarization estimation method with sparse conical conformal array consisting of concentred loop and dipole (CLD) pairs along the z-axis direction is proposed in this paper. In the algorithm, the DOA and polarization information of incident signals are decoupled through transformation to array steering vectors. According to the array manifold vector relationship between electric dipoles and magnetic loops, the signal polarization parameters are given. The phase differences between reference element and elements on upper circular ring are acquired from the steering vectors of upper circular ring, it can be used to give rough but unambiguous estimates of DOA. The phase differences are also used as coarse references to disambiguate the cyclic phase ambiguities in phase differences between two array elements on lower circular ring. Without spectral peak searching and parameter matching, this method has the advantage of small amount of calculation. Finally, simulation results verify the effectiveness of the algorithm.
Citation
Guibao Wang, "A Joint Parameter Estimation Method with Conical Conformal CLD Pair Array," Progress In Electromagnetics Research C, Vol. 57, 99-107, 2015.
doi:10.2528/PIERC15021206
References

1. Nehorai, A. and E. Paldi, "Vector sensor array processing for electromagnetic source localization," IEEE Trans. Signal Process., Vol. 42, No. 2, 376-398, 1994.
doi:10.1109/78.275610

2. Nehorai, A. and E. Paldi, "Vector-sensor array processing for electromagnetic source localization," 25th Asilomar Conf. Signals, Syst., Comput., 566-572, Pacific Grove, CA, 1991.

3. Wang, L. M., Z. H. Chen, and G. B. Wang, "Direction finding and positioning algorithm with COLD-ULA based on quaternion theory," Journal of Communications, Vol. 9, No. 10, 778-784, Oct. 2014.
doi:10.12720/jcm.9.10.778-784

4. Li, J., "Direction and polarization estimation using arrays with small loops and short dipoles," IEEE Trans. Antennas Propag., Vol. 41, No. 3, 379-387, 1993.
doi:10.1109/8.233120

5. Wong, K. T. and M. D. Zoltowski, "Polarization diversity and extended aperture spatial diversity to mitigate fading-channel effects with a sparse array of electric dipoles or magnetic loops," IEEE Int. Veh. Technol. Conf., 1163-1167, 1997.

6. Wong, K. T. and M. D. Zoltowski, "High accuracy 2D angle estimation with extended aperture vector sensor arrays," Proc. IEEE. Int. Conf. Acoust., Speech, Signal Process., Vol. 5, 2789-2792, Atlanta, GA, May 1996.

7. Wong, K. T. and M. D. Zoltowski, "Uni-vector-sensor ESPRIT for multisource azimuth, elevation, and polarization estimation," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1467-1474, Oct. 1997.
doi:10.1109/8.633852

8. Wang, L. M., L Yang, G. B. Wang, Z. H. Chen, and M. G. Zou, "Uni-Vector-sensor dimensionality reduction MUSIC algorithm for DOA and polarization estimation," Math. Probl. Eng., Vol. 2014, Article ID 682472, 9 Pages, 2014.

9. Li, J., R. T. Compton, and Jr., "Two-dimensional angle and polarization estimation using the ESPRIT algorithm," IEEE Trans. Antennas Propag., Vol. 40, No. 5, 550-555, May 1992.
doi:10.1109/8.142630

10. Wang, L. M., M. G. Zou, G. B.Wang, and Z. H. Chen, "Direction finding and information detection algorithm with an L-shaped CCD array," IETE Technical Review, Vol. 32, No. 2, 114-122, 2015.
doi:10.1080/02564602.2014.984780

11. Li, J., R. T. Compton, and Jr., "Angle estimation using a polarization sensitive array," IEEE Trans. Antennas Propag., Vol. 39, No. 10, 1539-1543, Oct. 1991.
doi:10.1109/8.97389

12. Yuan, X., K. T.Wong, and K. Agrawal, "Polarization estimation with a dipole-dipole pair, a dipoleloop pair, or a loop-loop pair of various orientations," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2442-2452, May 2012.
doi:10.1109/TAP.2012.2189740

13. Wong, K. T. and A. K. Y. Lai, "Inexpensive upgrade of base-station dumb-antennas by two magnetic loops for “blind’ adaptive downlink beamforming," IEEE Antennas Propag. Mag., Vol. 47, No. 1, 189-193, Feb. 2005.
doi:10.1109/MAP.2005.1436274

14. Wong, K. T., "Direction finding/polarization estimation — Dipole and/or loop triad(s)," IEEE Trans. Aerosp. Electron. Syst., Vol. 37, No. 2, 679-684, Apr. 2001.
doi:10.1109/7.937478

15. Yuan, X., "Quad compositions of collocated dipoles and loops: For direction finding and polarization estimation," Antennas and Wireless Propagation Letters, Vol. 11, 1044-1047, Aug. 2012.
doi:10.1109/LAWP.2012.2215301

16. Li, Y. and J. Q. Zhang, "An enumerative nonLinear programming approach to direction finding with a general spatially spread electromagnetic vector sensor array," Signal Processing, Vol. 2013, No. 93, 856-865, 2013.
doi:10.1016/j.sigpro.2012.10.007

17. Gong, X. F., K. Wang, Q. H. Lin, Z. W. Liu, and Y. G. Xu, "Simultaneous source localization and polarization estimation via non-orthogonal joint diagonalization with vector-sensors," Sensors, Vol. 2012, No. 12, 3394-3417, 2012.
doi:10.3390/s120303394

18. Josefsson, L. and P. Persson, "Conformal array antenna theory and design," Series on Electromagnetic Wave Theory, Wiley, IEEE Press, New York, 2006.

19. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley, New York, 2005.

20. Hansen, R. C., P. T. Bargeliotes, J. Boersma, Z. W. Chang, K. E. Golden, A. Hessel, W. H. Kummer, R.Mather, H. E. Mueller, and D. C. Pridmore-Brown, Conformal Antenna Array Design Handbook, Department of the Navy, Air Systems Command, PN, 1981.

21. Wong, K. T. and M. D. Zoltowski, "Direction finding with sparse rectangular dual-size spatial invariance array," IEEE Trans. Aerosp. Electron. Syst., Vol. 34, No. 4, 1320-1327, Oct. 1998.
doi:10.1109/7.722717

22. Zoltowski, M. D. and K. T. Wong, "Closed-form eigenstructure-based direction finding using arbitrary but identical subarrays on a sparse uniform cartesian array grid," IEEE Trans. Signal Process., Vol. 48, No. 8, 2205-2210, Aug. 2000.
doi:10.1109/78.852001

23. Mathews, C. P. and M. D. Zoltowski, "Eigenstructure techniques for 2-D angle estimation with uniform circular array," IEEE Trans. Signal Process., Vol. 42, No. 9, 2395-2407, Sep. 1994.
doi:10.1109/78.317861

24. Akkar, S., F. Harabi, and A. Gharsallah, "Concentric circular array for directions of arrival estimation of coherent sources with MUSIC algorithm," XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design, 1-5, Gammath, Italy, Oct. 2010.

25. Wang, L. M., G. B. Wang, and Z. H. Chen, "Joint DOA-polarization estimation based on uniform concentric circular array," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 13, 1702-1714, 2013.
doi:10.1080/09205071.2013.823122

26. Yuan, X., K. T. Wong, Z. X. Xu, and K. Agrawal, "Various compositions to form a triad of collocated dipoles/loops, for direction finding and polarization estimation," IEEE sensors Journal,, Vol. 12, No. 6, 1763-1771, 2012.
doi:10.1109/JSEN.2011.2179532