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A Joint Parameter Estimation Method with Conical
Conformal CLD Pair Array

Gui-Bao Wang*

Abstract—A novel direction of arrival (DOA) and polarization estimation method with sparse conical
conformal array consisting of concentred loop and dipole (CLD) pairs along the z-axis direction is
proposed in this paper. In the algorithm, the DOA and polarization information of incident signals are
decoupled through transformation to array steering vectors. According to the array manifold vector
relationship between electric dipoles and magnetic loops, the signal polarization parameters are given.
The phase differences between reference element and elements on upper circular ring are acquired from
the steering vectors of upper circular ring, it can be used to give rough but unambiguous estimates
of DOA. The phase differences are also used as coarse references to disambiguate the cyclic phase
ambiguities in phase differences between two array elements on lower circular ring. Without spectral
peak searching and parameter matching, this method has the advantage of small amount of calculation.
Finally, simulation results verify the effectiveness of the algorithm.

1. INTRODUCTION

In the last few years, thanks to the advances in sensor technology, electromagnetic vector sensor
(EMVS) array is widely used in communication system due to its polarization diversity. The problem
of estimating signal polarizations along with arrival angles has been discussed previously in many
articles [1–17]. The first direction-finding algorithms, explicitly exploiting all six electromagnetic
components, have been developed by Nehorai and Paldi [1, 2] and Li [4], respectively. The cross-
product-based direction of arrival (DOA) estimation algorithm was first adapted to ESPRIT by Wong
and Zoltowski [5, 6]. The uni-vector-sensor ESPRIT and MUSIC algorithm were proposed in [7, 8],
respectively. In fact, the aforementioned literatures mostly discuss the six collocated and orthogonally
oriented electromagnetic sensors, which is called “complete” EMVS. The “incomplete” EMVS antenna
configuration has been extensively studied by many authors, such as two identical dipoles [9–11], two
identical loops [12, 13], triad dipole or triad loop [14, 15], etc. [16, 17]. In contrast to “complete” and
other “incomplete” EMVS as described above, collocated loops and dipoles (CLD) along the z-axis
are easier to realize the decoupling of polarization and angle of arrival parameters because of its simple
structure. Polarization parameter estimation based on CLD pair is independent of the source’s direction-
of-arrival and requires no prior information of azimuth and elevation angles. This independence cannot
be applied to other antenna configuration.

Parameter estimation based on conformal antenna array has been a hot topic for a number of
years. In particular, conformal array antennas potentially meet the needs of a variety of airborne
radar and other defense applications [18, 19]. The benefits include reduction of aerodynamic drag, wide
angle coverage, space savings, potential increase in available aperture [20]. Conical conformal array
is typical of many conformal arrays. In contrast to planar arrays, when conical conformal array is used
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for wide range (more than 90 degrees) elevation angle estimation, it does not introduce ambiguity in
elevation angle. Diversely polarized antenna arrays have been exploited in a number of direction finding
algorithms. The proposed work discusses CLD pairs oriented along the z axis of Cartesian coordinate.
Compared with “complete” EMVS, mutual coupling between CLD pair component antennas can be
greatly decreased.

ESPRIT represents a highly popular eigenstructure based parameter estimation method, which
has better performance in narrow-band condition. But in practice, the methods are often demanded
to work in a wide frequency band. That means the array will have a large aperture, and result in an
improper array configuration. It is well known that the uniform intersensor spacing beyond a half-
wavelength will lead to a set of cyclically ambiguous of array manifold matrix [6, 21, 22]. Thanks to the
circular symmetry, uniform circular array (UCA) in [23] and uniform concentric circular array (UCCA)
in [24, 25] are attractive antenna configurations in the context of DOA estimation. A uniform multiple
circular ring CLD arrays arranged on a conical surface is researched in this paper.

The purpose of this paper is to study ESPRIT high-resolution algorithm of estimating parameters
with a sparse conical conformal CLD pairs (CCCP) array. The CCCP is a three-dimensional space
surrounding the array, which can resolve the signal from all the directions. The main motivation of
this paper is to take advantage of the equal central angle of the upper circular ring array elements and
the corresponding array element of lower circular ring. The upper circular ring, which suffers no phase
ambiguity, is used to find the coarse DOA estimates to disambiguate cyclically ambiguous estimates
from the lower circular ring with the larger array aperture.

2. PROBLEM FORMULATION

K narrowband completely polarized electromagnetic plane wave source signals from far-field impinge
upon a CCCP array, which is composed of N identical CLD pairs, as shown in Figure 1. For the CLD
pairs, the dipoles parallel to the z-axis are referred to as the z-axis dipoles and the loops parallel to the
x-y plane as the x-y plane loops, respectively measuring the z-axis electric field components and the
z-axis magnetic field components. The CLD pairs’ steering vector of the kth (1 ≤ k ≤ K) unit-power
electromagnetic source signal is the following 2 × 1 vector [4, 26]:

a(θk, γk, ηk) =
[
ekz

hkz

]
=
[
− sin θk sin γke

jηk

sin θk cos γk

]
(1)

where θk ∈ [0, π] is the signal’s elevation angle measured from the positive z-axis, γk ∈ [0, π/2] the
auxiliary polarization angle, and ηk ∈ [−π, π] the polarization phase difference. The z-axis electric field
ekz and z-axis magnetic field hkz both involve the same factor, so polarization estimation based on CLD
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Figure 1. CCCP array geometry.
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pairs is independent of the source’s direction-of-arrival, and it requires no prior information of azimuth
and elevation angles.

Without loss of generality, we assume that the reference element is placed at the conical tip (origin).
The distances between the reference element and the upper circular ring elements are equal to l1
(l1 ≤ 0.5λmin), and the distances between the reference element and the lower circular ring elements are
equal to l2 (l2 � 0.5λmin) where λmin is the minimal signals’ wavelength of the incident signals. On the
upper circular ring, there are N/2 elements, which have the same angle position as that on the lower
circular ring. Then the data collected by the CCCP array at time t can be represented as

X (t) =
[
A1

A2

]
S (t) + N (t) = AS (t) + N (t) (2)

where X(t) is the received signal, A the (2N +2)×K steering vector matrix of K incident signals, S(t)
the incident signal, and N(t) the noise. A1 and A2 are sub-array steering vectors of N + 1 loops and
N + 1 dipoles, respectively, which can be expressed as

A1 =

⎡
⎢⎢⎢⎣

sin θ1 cos γ1 ⊗ q (θ1, φ1)
sin θ2 cos γ2 ⊗ q (θ2, φ2)

...
sin θK cos γK ⊗ q (θK , φK)

⎤
⎥⎥⎥⎦

T

(3)

A2 =

⎡
⎢⎢⎢⎣

− sin θ1 sin γ1e
jη1 ⊗ q (θ1, φ1)

− sin θ2 sin γ2e
jη2 ⊗ q (θ2, φ2)
...

− sin θK sin γKejηK ⊗ q (θK , φK)

⎤
⎥⎥⎥⎦

T

(4)

q (θk, φk) =
[
1,qT

u (θk, φk) ,qT
d (θk, φk)

]
(5)

where q(θk, φk) is the spatial steering vector of whole CCCP array, qu(θk, φk) and qd(θk, φk) are
respectively that of the upper and lower circular ring sub-array.

qu (θk, φk) =

⎡
⎢⎢⎢⎢⎢⎣

ej
2πR1

(
sin(θk) cos(φk−ϕ1)− d2−d1

R1
cos θk

)
λ

...

ej

2πR1

(
sin θk cos

(
φk−ϕ N

2

)
− d2−d1

R1
cos θk

)

λ

⎤
⎥⎥⎥⎥⎥⎦ (6)

qd (θk, φk) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ej
2πR2

(
sin(θk) cos

(
φk−ϕ N

2 +1

)
− d2

R2
cos θk

)

λ

ej

2πR2

(
sin(θk) cos

(
φk−ϕ N

2 +2

)
− d2

R2
cos θk

)

λ

...

ej
2πR2

(
sin(θk) cos(φk−ϕ

N )− d2
R2

cos θk

)
λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

with ϕn = 4π(n − 1)/N n = 1, . . . , N are the angular position of array elements, and φk denotes
signal’s azimuth angle measured from positive x-axis. The general assumption is that A1 and A2 are
full-rank matrices. The covariance matrix Rx is given by

Rx = ARsAH + σ2I (8)

where Rs is the covariance matrix of incident signals and σ2 the additive white noise power. Let Es be
the (2N + 2) × K matrix composed of the K eigenvectors corresponding to the K largest eigenvalues
of Rx, and En denotes the (2N + 2) × (2N + 2 − K) matrix composed of the remaining 2N + 2 − K
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eigenvectors of Rx. According to the subspace theory, the signal subspace can be expressed explicitly
as

Es = AT =
[
A1

A2

]
T (9)

Es1 = A1T (10)
Es2 = A2T = A1ΦT (11)

where Φ = diag([− tan γ1e
jη1, . . . , − tan γKejηK]) polarization parameters can be got from Φ{

γk = tan−1 (|Φkk|)
ηk = arg (−Φkk)

(12)

Since both E1 and E2 are full-rank, there exists a unique nonsingular matrix Ω such that

Es1Ω = Es2 ⇒ Ω =
(
EH

s1Es1

)−1
EH

s1Es2 (13)

ΩT−1 = T−1Φ (14)

Equation (14) implies that Φ is a diagonal matrix whose diagonal elements are composed of the
K eigenvalues of space-polarization matrix Ω, and the full-rank matrix T−1 is composed of the K
eigenvectors of matrix Ω. Then, A1 can be calculated by

A1 = Es1T−1 A2 = Es2T−1 (15)

The space steering vector estimates of upper circular ring is given:

q̃u

(
θ̃k, φ̃k

)
=

Â1

(
2 : N

2 + 1, k
)

Â1 (1, k)
=

Â2

(
2 : N

2 + 1, k
)

Â2 (1, k)
(16)

Equation (16) can be represented as follows:

q̃u

(
θ̃k, φ̃k

)
=

⎡
⎢⎢⎢⎢⎢⎣

ej
2πR1

(
sin θ̃k cos(φ̃k−ϕ1)− d2−d1

R1
cos θ̃k

)
λ

...

ej
2πR1

(
sin θ̃k cos

(
φ̃k−ϕ N

2

)
− d2−d1

R1
cos θ̃k

)

λ

⎤
⎥⎥⎥⎥⎥⎦ (17)

According to Formula (17), the following relationship can be obtained:

Φ1 = arg
(
q̃u

(
θ̃k, φ̃k

))
=

⎡
⎢⎢⎢⎢⎣

2πR1

(
sin θ̃k cos(φ̃k−ϕ1)− d2−d1

R1
cos θ̃k

)
λ

...
2πR1

(
sin θ̃k cos

(
φ̃k−ϕ N

2

)
− d2−d1

R1
cos θ̃k

)
λ

⎤
⎥⎥⎥⎥⎦ (18)

The space steering vector estimates of lower circular ring is given:

q̂d

(
θ̂k, φ̂k

)
=

Â1

(
N
2 +2 : N+1, k

)
Â1 (1, k)

=
Â2

(
N
2 +2 : N + 1, k

)
Â2 (1, k)

=

⎡
⎢⎢⎢⎢⎢⎣

ej
2πR2

(
sin θ̂k cos(φ̂k−ϕ1)− d2

R2
cos θ̂k

)
λ

...

ej
2πR2

(
sin θ̂k cos

(
φ̂k−ϕ N

2

)
− d2

R2
cos θ̂k

)

λ

⎤
⎥⎥⎥⎥⎥⎦ (19)

According to Φ1, the rough phase estimation of q̂d(θ̂k, φ̂k) is got:

Φ2 = Φ1
l2
l1

(20)

The phase ambiguity number vector meets:

m (n, k) = argmin
{
arg
(
q̂d

(
θ̂k, φ̂k

))
+ 2πm (n, k) − Φ2

}
(21)
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From the value m(n, k) in (21), the accurate phase vector estimation of q̂d(θ̂k, φ̂k) is obtained:

D = arg
(
q̂d

(
θ̂k, φ̂k

))
+ 2πm (n, k) (22)

From Formulas (19) and (22), the accurate estimation of Poynting vector is achieved:

P̂k

(
θ̂k, φ̂k

)
=

⎡
⎢⎣
sin θ̂k cos φ̂k

sin θ̂k sin φ̂k

cos θ̂k

⎤
⎥⎦ = C#D (23)

where C is a matrix varying with elements’ position of lower circular ring, with

C =
2πR2

λ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −δ
d2

R2

cos
(

4π
N

)
sin
(

4π
N

)
− d2

R2
...

...
...

cos
(

4π
N

(
N

2
− 1
))

sin
(

4π
N

(
N

2
− 1
))

− d2

R2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

From Formula (23), the accurate estimates are given:

θ̂k = arcos
([

P̂k

(
θ̂k, φ̂k

)]
3

)
(25)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ̂k = arctan

⎛
⎝
[
P̂k

(
θ̂k, φ̂k

)]
2[

P̂k

(
θ̂k, φ̂k

)]
1

⎞
⎠ ,

[
P̂k

(
θ̂k, φ̂k

)]
1
≥ 0

φ̂k = π + arctan

⎛
⎝
[
P̂k

(
θ̂k, φ̂k

)]
2[

P̂k

(
θ̂k, φ̂k

)]
1

⎞
⎠ ,

[
P̂k

(
θ̂k, φ̂k

)]
1

< 0

(26)

where [·]i (i = 1, 2, 3) refers to the ith element in the bracketed vector. The formula involves factor
cos θ, which does not introduce an ambiguity in θ, because the θ in the upper hemisphere and the θ in
the lower hemisphere give different cos θ.
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Figure 2. DOA scatter diagram using UCA
method.
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Figure 3. DOA scatter diagram using CCCP
method.
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Figure 4. Polarization scatter diagram with
UCA method.
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Figure 5. Polarization scatter diagram with
CCCP method.

3. NUMERICAL EXAMPLES

To test the effectiveness of the proposed method, the following condition is considered. Two high-
frequency incoherent sources impinge respectively on three arrays, viz., UCCA, CCCP and UCA, and
there are 16 sensors on each circular ring of the three arrays above mentioned. UCCA has the same radius
as CCCP whose inner circular ring radius R1 = 0.3λ and outer circular ring radius R2 = 1.5λ. UCA
with radius R = 0.3λ. Two incident signals are taken to have bearing parameters: [θ1, φ1] = [30◦, 43◦],
[γ1, η1] = [67◦, 80◦], [θ2, φ2] = [72◦, 85◦][γ2, η2] = [30◦, 120◦], 512 snapshots per experiment, 100
independent experiments per data point.

In the first experiment, we consider a scenario with 100 independent Monte Carlo trials running on
the corresponding CCCP array. The the signal-to-noise ratio (SNR) is set to 10 dB. The sets of values
of the DOA and polarization variables have been represented in scatter diagrams (Figures 2–5).

From Figure 3, it is shown that almost all estimated values are located in the vicinity of actual values
[θ1, φ1] = [30◦, 43◦] and [θ2, φ2] = [72◦, 85◦] by using CCCP method. The estimated values of [θ̂1, φ̂1] are
in the numerical range (29.8◦, 30.2◦) and (42.7◦, 43.3◦). On the contrary, from Figure 2, the estimated
values [θ̂1, φ̂1] using UCA method are distributed in the range of (29.3◦, 30.9◦) and (42.2◦, 44.2◦). The
estimated error using UCA method is much larger than that of CCCP method.

From Figure 5, it is shown that almost all estimated values are located in the vicinity of actual
values [γ1, η1] = [67◦, 80◦] and [γ2, η2] = [30◦, 120◦] by using CCCP method. The estimated values of γ̂2

and η̂2 are in the numerical range (29.9◦, 30.1◦) and (119.9◦, 120.2◦), respectively. On the contrary, from
Figure 4, the estimated values are distributed in the range of γ̂2 (29.8◦, 30.2◦) and η̂2 (119.4◦, 120.6◦).
The estimated error using UCA method is larger than that of CCCP method.

In the second experiment, we compare the performance of CCCP method to UCA method and
UCCA method with respect to SNR. The comparison of CRLB and the above algorithms are also
given. In the simulations, the SNR is from −6 to 20 dB, and 512 snapshots are used in each of the 100
independent Monte Carlo simulation experiments. The performance of standard deviation is illustrated,
and the corresponding results are shown in Figures 6–9.

The solid curves with star, triangle, circular and diamond data points in Figures 6–9 respectively
plot the DOA and polarization angles’ estimation standard deviation, respectively estimated by the
proposed UCA, UCCA, CCCP and CRLB method, at various signal-to-noise ratio (SNR) levels. It is
obviously indicated that our proposed method can work well. The performance of the proposed CCCP
method is close to that of the CRLB. The proposed CCCP procedure is better than UCA and nearly
the same as UCCA. Moreover, CCCP estimating elevation angle by cos θ does not introduce ambiguity
in θ, but UCCA estimating elevation angle by sin θ may introduce ambiguity in θ because the θ in the
upper hemisphere and the θ in the lower hemisphere give the same sin θ. The estimation precision at
−6 dB based on the CCCP model has improved larger than 0.35◦ for azimuth angle, 0.8◦ for elevation
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Figure 6. Standard deviation of the azimuth
versus SNR.
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Figure 7. Standard deviation of the elevation
versus SNR.
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Figure 8. Standard deviation of the APA versus
SNR.
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Figure 9. Standard deviation of the PPD versus
SNR.
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Figure 10. Probability of success of DOA versus
SNR.
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angle, 0.2◦ for auxiliary polarization angle (APA), 0.5◦ for polarization phase difference (PPD) angle,
compared with that of the UCA method. The enhanced performance is rooted in the sparse embattle of
CCCP. When there is no elevation quadrant ambiguity, UCCA can achieve nearly the same estimation
precision as CCCP.

In the last experiment, we consider the probability of success of DOA and polarization estimations.

Here we keep the settings unchanged and set the relationship
√

(θ − �

θ)2 + (φ − �

φ)2 < 1◦ to be the

successful DOA experiment, where θ and φ denote the true DOA value and
�

θ and
�

φ represent the
corresponding estimated value. The definition of the successful polarization experiment is the same as
that of the successful DOA experiment. The result is shown in Figures 10–11.

The curves with star and circular data points in Figures 10–11 respectively plot the probability of
success of DOA and polarization, respectively estimated by the UCA, UCCA and the proposed CCCP
method, at various signal-to-noise ratio (SNR) levels. The proposed CCCP procedure is better and
more robust than the UCA and nearly the same as UCCA procedure.

4. CONCLUSION

A new DOA and polarization estimation method based on CCCP array is proposed, which overcomes
the weakness of phase ambiguity of sparse array according to short and long baselines theory. Poynting
vector is obtained by the least square method, so the proposed CCCP method overcomes quadrant
ambiguity in elevation angle when conical conformal array is used for wide range elevation angle
(more than 90 degrees) estimation. In contrast to UCCA, CCCP does not increase computation
but eliminates elevation angle quadrant ambiguity and shows better performance than UCA. CCCP
has broad application prospects in airborne, missile-borne and other aerospacecrafts.
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