Vol. 52
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-07-15
A Multi-Feature Visibility Processing Algorithm for Radio Interferometric Imaging on Next-Generation Telescopes
By
Progress In Electromagnetics Research C, Vol. 52, 39-52, 2014
Abstract
The visibility distribution, which is related to the configuration of stations, can be categorized into different features, each having different levels of data number density. A computationally efficient multi-feature image reconstruction algorithm, well adapted for next-generation telescopes, is proposed based on this observation, which is more flexible to handle massive amount of visibility data expected in the future. In reconstructing the M87 image with the visibility data simulated on the Low-Frequency Array (LOFAR), this algorithm turns out to be a few hundreds to one thousand times faster and is more resilient to noises than the conventional algorithms.
Citation
Mu-Min Chiou, Jean-Fu Kiang, and Raj Mittra, "A Multi-Feature Visibility Processing Algorithm for Radio Interferometric Imaging on Next-Generation Telescopes," Progress In Electromagnetics Research C, Vol. 52, 39-52, 2014.
doi:10.2528/PIERC14051502
References

1. Thompson, A. R., J. M. Moran, and G. W. Swenson Jr., nterferometry and Synthesis in Radio Astronomy, 2nd Edition, Wiley-VCH, 2004.

2. Baars, J. W. M., L. R. D'Addario, and A. R. Thompson, "Radio astronomy in the early twenty-first century," Proc. IEEE, Vol. 97, No. 8, 1377-1381, Aug. 2009.
doi:10.1109/JPROC.2009.2022889

3. Gull, S. F. and J. Skilling, "Maximum entropy method in image processing," IEE Proc. Commun. Radar Signal Process., Vol. 131, No. 6, 646-659, 1984.
doi:10.1049/ip-f-1.1984.0099

4. Molina, R., J. Nunez, F. J. Cortijo, and J. Mateos, "Image restoration in astronomy: A Bayesian perspective," IEEE Signal Process. Mag., Vol. 18, No. 2, 11-29, 2001.
doi:10.1109/79.916318

5. Chen, B.-D. and L. Amir, "Parametric high resolution techniques for radio astronomical imaging," IEEE J. Select. Topics Signal Process., Vol. 2, No. 5, 670-684, 2008.
doi:10.1109/JSTSP.2008.2005318

6. Rau, U., S. Bhatnagar, M. A. Voronkov, and T. J. Cornwell, "Advances in calibration and imaging techniques in radio interferometry," Proc. IEEE, Vol. 97, No. 8, 1472-1481, Aug. 2009.
doi:10.1109/JPROC.2009.2014853

7. Levanda, R. and A. Leshem, "Synthetic aperture radio telescopes," IEEE Trans. Signal Process., Vol. 27, No. 1, 14-29, Jan. 2010.
doi:10.1109/MSP.2009.934719

8. Kundur, D. and D. Hztzinakos, "Blind image deconvolution," IEEE Signal Process. Mag., Vol. 13, No. 3, 43-64, May 1996.
doi:10.1109/79.489268

9. Hogbom, J. A., "Aperture synthesis with a non-regular distribution of interferometers baselines," A & AS, Vol. 15, 417-426, 1974.

10. Cornwell, T. J., "Multiscale CLEAN deconvolution of radio synthesis images," IEEE J. Select. Topics Signal Process., Vol. 2, No. 5, 793-801, Oct. 2008.
doi:10.1109/JSTSP.2008.2006388

11. Bobin, J., J.-L. Starck, and R. Ottensamer, "Compressed sensing in astronomy," IEEE J. Select. Topics Signal Process., Vol. 2, No. 5, 718-726, Oct. 2008.
doi:10.1109/JSTSP.2008.2005337

12. Carrillo, R. E., J. D. McEwen, and Y. Wiaux, "Sparsity averaging reweighted analysis (SARA): A novel algorithm for radio-interferometric imaging," Mon. Not. Roy. Astronom. Soc., 591-594, Jun. 2012.

13. Carrillo, R. E., J. D. McEwen, D. van de Ville, J.-P. Thiran, and Y. Wiaux, "Sparsity averaging for compressive imaging," IEEE Signal Process. Lett., Vol. 20, No. 6, 591-594, Jun. 2013.
doi:10.1109/LSP.2013.2259813

14. Carrillo, R. E., J. D. McEwen, and Y. Wiaux, "PURIFY: A new approach to radio-interferometric imaging," Mon. Not. Roy. Astronom. Soc., Vol. 439, No. 4, 3591-3604, Feb. 2014.
doi:10.1093/mnras/stu202

15. Johnston, S., M. Bailes, N. Bartel, C. Baugh, et al. "Science with the Astralian square kilometre array pathfinder," Pub. Astronom. Soc. Australia, Vol. 24, 174-188, Dec. 2007.
doi:10.1071/AS07033

16. Tingay, S. J., R. Goeke, J. D. Bowman, et al. "The Murchison widefield array: The square kilometre array precursor at low radio frequencies," Pub. Astronom. Soc. Australia, Vol. 30, e007, 2013.

17. Jonas, J. L., "MeerKAT --- The South African array with composite dishes and wide-band single pixel feeds," Proc. IEEE, Vol. 97, No. 8, 1522-1530, Aug. 2009.
doi:10.1109/JPROC.2009.2020713

18. Fomalont, E. and M. Reid, "Microarcsecond astrometry using the SKA," New Astronomy Rev., Vol. 48, 1473-1482, Sep. 2004.
doi:10.1016/j.newar.2004.09.037

19. Dewdney, P. E., P. J. Hall, R. T. Schilizzi, and T. J. L. W. Lazio, "The square kilometre array," Proc. IEEE, Vol. 97, No. 8, 1482-1496, Aug. 2009.
doi:10.1109/JPROC.2009.2021005

20. Van Haarlem, M. P., M. W. Wise, et al. "LOFAR: The low-frequency array," Astron. Astrophys., Vol. 556, A2, Jul. 16, 2013.

21. Marco, D. V., W. G. Andre, and N. Ronald, "The LOFAR telescope: System architecture and signal processing," Proc. IEEE, Vol. 97, No. 8, 1431-1437, Aug. 2009.
doi:10.1109/JPROC.2009.2020509

22. Stefan, J. W., "In situ antenna performance evaluation of the LOFAR phased array radio telescope," IEEE Trans. Antennas Propagat., Vol. 59, No. 6, 1981-1989, Jun. 2011.
doi:10.1109/TAP.2011.2122225

23. Sutter, P. M., B. D. Wandelt, et al. "Probabilistic image reconstruction for radio interferometers," Mon. Not. Roy. Astronom. Soc., Vol. 438, No. 1, 768-778, Sep. 2013.
doi:10.1093/mnras/stt2244

24. Cornwell, T. J., K. Golap, and S. Bhatnagar, "The non-coplanar baselines effect in radio interferometry: The W-projection algorithm," IEEE J. Select. Topics Signal Process., Vol. 2, No. 5, 647-657, Oct. 2008.
doi:10.1109/JSTSP.2008.2005290

25. Thompson, A. and R. Bracewell, "Interpolation and Fourier transformation of fringe visibilities," Astron. J., Vol. 79, No. 1, 11V24, 1974.

26. Thiebaut, E. and J. F. Giovannelli, "Image reconstruction in optical interferometry using a general framework to formally describe and compare different methods," IEEE Signal Process. Mag., Vol. 27, No. 1, 97-109, Jan. 2010.
doi:10.1109/MSP.2009.934870

27. De Gasperin, F., et al. "M87 at metre wavelengths: The LOFAR picture," Astron. Astrophys.,, Vol. 547, A56, Oct. 2012.

28. Griva, I., G. N. Stephen, and S. Ariela, Linear and Nonlinear Optimization, Ch. 13, Soc. Indust. Applied Math., 2009.
doi:10.1137/1.9780898717730

29. Serge, M. and M. M. Laurent, "Convex approximation to the likelihood criterion for aperture synthesis imaging," J. Opt. Soc. Am. A, Vol. 22, 2348-2356, Nov. 2005.