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A Multi-Feature Visibility Processing Algorithm for Radio
Interferometric Imaging on Next-Generation Telescopes
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Abstract—The visibility distribution, which is related to the configuration of stations, can
be categorized into different features, each having different levels of data number density. A
computationally efficient multi-feature image reconstruction algorithm, well adapted for next-generation
telescopes, is proposed based on this observation, which is more flexible to handle massive amount of
visibility data expected in the future. In reconstructing the M87 image with the visibility data simulated
on the Low-Frequency Array (LOFAR), this algorithm turns out to be a few hundreds to one thousand
times faster and is more resilient to noises than the conventional algorithms.

1. INTRODUCTION

Radio interferometry techniques have been used to reconstruct images of astrophysical objects using
incomplete and noisy visibility data. By augmenting more stations into an existing telescope, higher
angular resolution and sensitivity can be achieved [1, 2].

In general, the image reconstruction process with radio interferometry can be formulated as a linear
inverse problem, in which the available measurement data are used to reconstruct the source image,
subject to certain constraints [3–6]. The measured visibility data, v̄mea, are related to the image, x̄, via
a measurement equation, v̄mea = ¯̄Φ · x̄ + ∆v̄mea, where ¯̄Φ is the measurement matrix, and ∆v̄mea is the
measurement error [7, 8]. The inverse problem is to reconstruct x̄ from v̄mea, usually accompanied by
certain regularization.

The CLEAN algorithm has been widely used in this area [9], which is a variant of the steepest
descent algorithms to minimize an object function, for example, ‖v̄mea− ¯̄Φ·x̄‖2

2, under a regularization [6].
Each iteration of the CLEAN algorithm can be divided into a major cycle and a minor cycle. The major
cycle estimates the increments of image, and the minor cycle modifies these increments before adding
them to the previous version of reconstructed image.

The CLEAN algorithm works well for multiple point-like sources, but has a poor convergence rate
when processing an extended source. A multi-scale CLEAN (MS-CLEAN) algorithm improves over its
predecessor by processing different scales simultaneously [10], which speeds up the convergence rate
when processing an extended source.

Several compressive sensing (CS) algorithms have been proposed for radio-interferometric imaging
to leverage the sparsity regularization [11–13]. The image is assumed to be sparse when expressed in
an orthonormal basis or a redundant dictionary (overcomplete dictionary), ¯̄Ψ, as x̄ = ¯̄Ψ · ᾱ, where ᾱ is
called the decomposition of the signal.

If the measurement matrix has the restricted isometry property (RIP), the image can be recovered
by solving a convex problem, min ‖ᾱ‖1 subject to ‖v̄mea − ¯̄Φ · ¯̄Ψ · ᾱ‖2 ≤ ε, where ε is an upper bound
on the L2 norm of the noise, and ‖ᾱ‖1 is the L1 norm of ᾱ. In [12], a sparsity averaging reweighted
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analysis (SARA) has been proposed, which adopts a reweighted L1 minimization scheme and redundant
dictionaries to further enhance the image fidelity.

CS-based techniques are claimed to have better image fidelity, flexibility and computation speed
over the conventional methods. A CS-based technique starts from an idealized random discrete visibility
coverage or variable density sampling patterns, which mimic generic sampling patterns of interferometric
measurements.

The CS technique has been extended to process continuous visibility distributions with high
scalability and speed enhancement, in which the simultaneous-direction method of multipliers (SDMM)
is applied to solve sparse imaging problems [14]. The SDMM was developed to deal with non-
differentiable object functions. The CS theory assumes a prior that the image is sparse when expressed
in a chosen dictionary, and small amount of measurement data inherently, which is not the case for
next-generation telescopes [11].

Next-generation radio telescopes, such as Square Kilometre Array Pathfinder (ASKAP) [15],
Murchinson Widefield Array (MWA) [16], Meerkat [17], Square kilometre Array (SKA) [18, 19], and
Low-Frequency Array (LOFAR) [20], are expected to achieve a wider dynamic range and higher angular
resolution than current instruments.

These telescopes will acquire a massive amount of data. Taking LOFAR for example, there are over
forty telescope stations and the number is likely to increase [20]. If the sampling time of 2 s with the
high-band antennas (HBA’s) is taken, over 15,000,000 visibility data will be collected within 6 hours of
operation [21, 22]. The number of measurement data will be increased further if the visibility data are
taken at multiple frequencies [6].

As a comparison, the amount of visibility data processed with conventional methods is relatively
small. For example, 11,469 data were simulated with a probabilistic image algorithm [23], 505,440 data
points were simulated with the MS-CLEAN algorithm [24], and 131,072 data points were simulated with
the PURIFY algorithm [14]. More efficient imaging techniques are required to process the vast amount
of measurement data collected by using the next-generation instruments for radio interferometry.

A regridding technique has been proposed to process the visibility data [25], which takes much
less computational time than the MS-CLEAN algorithm. The regridded visibility data are obtained by
weighting the measured visibility data first, then applying the convolution of a sampling function to the
weighted visibility data. Both processes involve the choice of empirical parameters, which may lead to
different images. Moreover, the regridded data are correlated and result in a poor signal-to-noise ratio
(SNR) in the recovered image [26].

In this work, a multi-feature algorithm is proposed to process four different features of the visibility
data separately, with the data simulated on the LOFAR configuration. This method is driven by
the measurement data, without the need of a prior function for regularization. It takes much shorter
computational time and is more resilient to noises than the conventional methods.

This paper is organized as follows. The reconstruction theory and the configuration of stations in
next-generation telescopes are briefly reviewed in Section 2, the multi-feature visibility distribution of
the M87 image [27] simulated on the LOFAR configuration is presented in Section 3, the multi-feature
algorithm is presented in Section 4, followed by simulations and discussions in Section 5. Finally, some
conclusions are drawn in Section 6.

2. RECONSTRUCTION THEORY AND CONFIGURATION OF STATIONS

Figure 1 shows the coordinate systems for the image and the visibility distributions, where ν̂u and ν̂v

are the unit vectors parallel to the geographic east-west and north-south directions, respectively; θ̂u and
θ̂v are the unit vectors parallel to ν̂u and ν̂v, respectively. The Earth-centered Earth-fixed coordinates,
(x, y, z), are used to describe the station positions in a telescope.

At a small field of view (FOV), the image distribution, x(θu, θv), and the visibility distribution,
v(νu, νv), form a Fourier transform pair as [1]

x(θu, θv) =
∫∫

v(νu, νv)e−j2π(νuθu+νvθv)dνudνv (1)

v(νu, νv) =
∫∫

x(θu, θv)ej2π(νuθu+νvθv)dθudθv (2)
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Figure 1. Coordinate systems for image and visibility distributions, the Earth-centered Earth-fixed
coordinate is used to describe station positions.

where λ is the operating wavelength; θu and θv are the angular position, measured from the center, r̄c.
Similarly, νu and νv are the components of a baseline, measured in wavelength. The position difference
between stations p and q is r̄p,q, and its projection onto the visibility plane is called a baseline, determined
as B̄ = ν̂uBu + ν̂vBv = (ν̂uν̂u + ν̂vν̂v) · r̄p,q.

2.1. Review of LOFAR Configuration

Figure 2 shows the distribution of LOFAR stations, including low-band antennas (LBA’s) operating in
the 10–90 MHz band and high-band antennas (HBA’s) operating in the 110–240MHz band. The shortest
baseline is about 70m [20–22]. There are 24 core stations (CS’s), located within a core area of 2 km in
radius. At the center of the core area, a Superterp consisting of six stations resides within an area of
320m in diameter. Outside the core area, 16 remote stations (RS’s) are located in Netherlands, and 8
international stations are distributed over Germany, France, the United Kingdom and Sweden [16]. In
this work, only core and remote stations are considered in the simulations without loss of generality.

(a) (b) (c) (d)

Figure 2. Distribution of LOFAR stations [20]. LBA’s and HBA’s are marked by hollow and solid
symbols, respectively; core, remote and international stations are marked by circles, triangles and
squares, respectively; inlets (b), (c) and (d) are the magnified picture of the dashed rectangular regions
in inlets (a), (b) and (c), respectively.

2.2. Brief Review of Other Next-generation Telescopes

In the SKA configuration, 50% of the data are collected within the central area with radius of 2.5 km,
another 25% are collected within 180 km off the center, and the other 25% are attributed to the other
stations [19].
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In the Meerkat, a large fraction of data are collected within the central area with 700 m in diameter,
to reconstruct images of wide angular extension with a wide dynamic range, and wide-field transients
can be detected at a lower data rate [17]. Some stations are placed 10 km off the center to acquire
higher image resolution and to locate point-like sources.

In the MWA, 50 tiles are uniformly distributed in the core area with 100 m in diameter, surrounded
by 62 tiles distributed over an area with 1.5 km in diameter [16]. Another 16 tiles are placed as far as
3 km off the center to achieve the highest angular resolution of images [16].

In the ASKAP, three station configurations are available, a very compact configuration with
maximum baseline of 400m, a medium compact configuration with maximum baseline of 2 km, and
an extended configuration with maximum baseline of 8 km [15].

The next-generation radio telescopes will face the challenges of having to deal with tremendous
volume of data over a wide high dynamic range and wide bandwidth, many different radio interferences,
as well as serious instrumentation and analysis difficulties [23].

3. MULTI-FEATURE VISIBILITY DISTRIBUTION

Figure 3 shows the image intensity of M87 with 256 × 256 pixels, which is located at the declination
of 12◦23′28′′ [27]. The image is taken at 140MHz, with the resolutions of ∆θu = 3.4′′ and ∆θv = 3.1′′.
The image intensity is normalized as

N∑

n=1

xn = 1 (3)

where N is the total number of image pixels.

Figure 3. LOFAR image of M87 near the center of Virgo cluster [27]. The resolution is ∆θu = 3.4′′
and ∆θv = 3.1′′.

Figure 4 shows the visibility distributions simulated at different declinations of 90◦, 65◦, 40◦ and
10◦, respectively. The sampling interval is 60 seconds, and the total observation time is 6 hours. The
visibility data collected from the CS-CS links concentrate around the origin, which bear low-resolution
information of the image. The visibility data collected from the CS-RS links usually take the shape of
ribbons, and those from the RS-RS links take the string shape. Both bear high-resolution information.

Figure 5(a) displays the number density of simulated visibility data when observing the M87 at the
declination of 12◦23′28′′, and Fig. 5(b) displays a zoom-in near the central region. The number density
is defined as the number of visibility data within a visibility cell. Each visibility cell has the size of
∆νu,def ×∆νv,def , which are related to the image resolution as

∆νu,def =
1

Ng∆θu
, ∆νv,def =

1
Ng∆θv

where Ng =
√

N is number of pixels in one row or one column of the image.
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(a) (b)

(c) (d)

Figure 4. Visibility distribution at declination of (a) 90◦, (b) 65◦, (c) 40◦ and (d) 10◦; red: data from
CS-CS links, black: data from CS-RS links, blue: data from RS-RS links.

(a) (b)

Figure 5. Number density of visibility data in the visibility plane, (a) whole region of interest, (b) zoom
in of the central region.

The number density varies drastically near the origin. The most crowded region is roughly in the
inner patch region, [−Wu,Wu]× [−Wv,Wv], with

Wu = max
Bu∈CS-CS links

|Bu|/λ, Wv = max
Bv∈CS-CS links

|Bv|/λ

The next crowded region lies in the outer patch, [−2Wu, 2Wu]× [−2Wv, 2Wv] excluding the inner patch.
The number density in the inner patch is on the order of 105 ∼ 106, while that in the outer patch is on
the order of 102 ∼ 104. Several ribbon regions are observed in Fig. 5(b), with their width near Wu or
Wv. The rest of the visibility data take the string form.
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4. MULTI-FEATURE ALGORITHM

The multi-feature algorithm processes the four different types of feature separately and reconstruct the
image as

x̄ = ¯̄F−1 · v̄i + ¯̄F−1 · v̄o + ¯̄F−1 · v̄r + ¯̄F−1 · v̄s (4)

where ¯̄F−1 stands for the inverse Fourier transform, v̄i, v̄o, v̄r and v̄s represent the visibility data in the
inner patch, outer patch, ribbons and strings, respectively.

By observation, the data associated with a specific remote station form a ribbon. Some of the
visibility data associated with the CS-RS links fall in the inner patch or the outer patch, and are
counted into the inner patch or the outer patch. Some data fall in the intersection of two or more
ribbons, and are counted into only one of them. Most of the visibility data associated with the RS-RS
links take the string form. The part of a string falling in a patch or a ribbon is counted into the patch
or the ribbon.

The multi-feature algorithm is a data-driven process. It can be scaled up to include additional
stations, like the international stations in the LOFAR. The multi-feature algorithm can also be adapted
for parallel computation, which is more flexible to deal with the vast amount of data the next-generation
telescopes will collect.

4.1. Grid Model of Visibility

In each visibility region, a grid with an optimized cell size is chosen to derive a set of modeled visibility
data, v[mu,mv] = v(mu∆νu,mv∆νv), which are stored in a one-dimension vector, v[m]. The modeled
visibility data on the grid are obtained as

v̄opt = arg min
v̄∈Ω

fdata(v̄) (5)

where Ω contains all the grid points in the subject region, each having at least one measurement data
within its four surrounding cells,

fdata(v̄) =
∑
nd

wnd

∣∣∣vmea
nd

− vmod
nd

∣∣∣
2

(6)

is the object function defined to determine vmod
nd

’s, the modeled visibility data at ν̄nd
’s. The weighting

coefficients, wnd
’s, are estimated as

wnd
= var

{
Re

{
vmea
nd

}}−1 = var
{
Im

{
vmea
nd

}}−1 (7)

where var {α} stands for the variance of the random variable α. Eq. (5) can be solved using the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [28], which is a variant of the quasi-Newton’s
method.

As shown in Fig. 6, the modeled visibility data corresponding to a measurement data is related to
the visibility data at its four surrounding grid points via bilinear interpolation as

vmod
n′ =

4∑

i=1

Rn′,m′
i
v[m′

i] (8)

where all the elements in the n′th row of ¯̄R are reset to zero, except

Rn′,m′
1

= (1− ξ′v)(1− ξ′u), Rn′,m′
2

= ξ′u(1− ξ′v), Rn′,m′
3

= ξ′uξ′v, Rn′,m′
4

= ξ′v(1− ξ′u)

m′
1, m′

2, m′
3 and m′

4 are the one-dimensional indices of (m′
u,m′

v), (m′
u + 1,m′

v), (m′
u + 1,m′

v + 1) and
(m′

u,m′
v + 1), respectively, with

m′
u =

⌊
ν ′u

∆νu

⌋
, m′

v =
⌊

ν ′v
∆νv

⌋
, ξ′u =

ν ′u −m′
u∆νu

∆νu
, ξ′v =

ν ′v −m′
v∆νv

∆νv
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Figure 6. Modeled visibility data at the baseline, ν̄n′ = (ν ′u, ν ′v), to be interpolated from four
surrounding visibility data, v[m′

1], v[m′
2], v[m′

3] and v[m′
4].

In the CLEAN and CS-based algorithms, the modeled visibility data in each iteration are derived

by transforming the most updated image via vmod
n′ =

N∑

n=1

Φn′,nxn. As a comparison, applying (8) to

calculate one modeled visibility data takes only four multiplications. In addition, the real value of image
intensity implies v(−νu,−νv) = v∗(νu, νv), which can be used to reduce the memory size by half.

Each type of visibility feature is processed separately as follows, which can be implemented in
parallel.

4.2. Inner Patch

Figure 7 shows the real part of the measured and the modeled visibility data, respectively, in the inner
patch. The visibility resolutions, ∆νu and ∆νv, are related to the image resolutions, ∆θu and ∆θv, as

∆νv = ∆νu
∆θu

∆θv

To choose the optimum resolution in a given visibility region, a mean-squared error (MSE) is defined
as

MSE =
1
N

∥∥∥x̄− x̄ref
∥∥∥

2

2
(9)

(a) (b)

Figure 7. Real part of visibility data in the inner-patch region, (a) measured and (b) modeled,
∆νu = 54λ, ∆νv = 59.225λ.
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where x̄ref is the reference image (true image without noise), and ‖x̄‖2 denotes the L2 norm of the
image, x̄.

Figure 8 shows the MSEi defined in (9), with x̄ = x̄i, derived from the visibility data in the inner
patch. Choosing ∆νu,i = 65λ (∆νv,i = 71.29λ) results in the lowest MSEi. The optimal reconstructed
image using only the inner-patch visibility data is obtained as

x̄opt
i = ¯̄F−1 · v̄i

Figure 8. MSEi as a function of ∆νu(λ) in the inner patch.

4.3. Outer Patch

Figure 9 shows the real part of the measured and the modeled visibility distributions, respectively, in
the outer patch. Fig. 10 shows the MSEo with different ∆νu’s, where MSEo is defined in (9), with
x̄ = x̄o + x̄opt

i , and x̄o is the reconstructed image using only the visibility data in the outer patch.
Choosing ∆νu,o = 142λ (∆νv,i = 155.742λ) results in the lowest MSEo. The optimal reconstructed
image using only the outer-patch visibility data is obtained as

x̄opt
o = ¯̄F−1 · v̄o

4.4. Ribbons

Figure 11 shows the configuration of 14 ribbons in the positive-νv half-plane, which are contributed by
the CS-RS links, and the symmetry property.

(a) (b)

Figure 9. Real part of visibility data in the outer patch, (a) measured and (b) modeled, ∆νu = 142λ,
∆νv = 155.742λ.
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Figure 10. MSEo as a function of ∆νu(λ) in the
outer patch.

Figure 11. Distributions of 14 ribbons in the
positive νv half-plane.

The image component reconstructed with these ribbons can be calculated as

x[nu, nv] =
uscvsc

N2
g

Mu∑

mu=1

Mv∑

mv=1

v[mu,mv]e−j2π(numuusc+nvmvvsc)/Ng

+
uscvsc

N2
g

Mu∑

mu=1

Mv∑

mv=1

v[−mu,−mv]e−j2π(−numuusc−nvmvvsc)/Ng

= 2
uscvsc

N2
g

Re
Nu∑

nu=1

Nv∑

mv=1

v[mu,mv]e−j2π(numuusc+nvmvvsc)/Ng

where Mu and Mv are the number of pixels in the νu and νv direction, respectively;

usc =
∆νu

∆νu,def
, vsc =

∆νv

∆νv,def

are the scaling factors in the νu and νv direction, respectively.
Figure 12 shows the real part of the measured and the modeled visibility distributions, respectively,

in one of the ribbons. Fig. 13 shows the MSEr as a function of ∆νu, where MSEr is defined as in (9),
with x̄ = x̄r + x̄opt

i + x̄opt
o , and x̄r is the image component reconstructed with only the visibility data

in the ribbons. Choosing ∆νu,r = 112λ (∆νv,r = 122.8387λ) results in the lowest MSEr. The optimal
reconstructed image using only the ribbon visibility data is obtained as

x̄opt
r = ¯̄F−1 · v̄r

4.5. Strings

Figure 14 shows the real part of the measured and the modeled visibility distributions, respectively, in
one of the strings. Fig. 15 shows the MSEs as a function of ∆νu, where MSEs is defined as in (9), with
x̄ = x̄s + x̄opt

i + x̄opt
o + x̄opt

r , and x̄s is the reconstructed image component with only the visibility data
in the strings. Choosing ∆νu,s = 119λ (∆νv,r = 130.516λ) results in the lowest MSEs. The optimal
reconstructed image using only the string visibility data is

x̄opt
s = ¯̄F−1 · v̄s

Finally, the reconstructed image becomes

x̄opt = x̄opt
i + x̄opt

o + x̄opt
r + x̄opt

s
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(a) (b)

Figure 12. Real part of visibility data in one of the ribbon regions, (a) measured and (b) modeled,
∆νu = 102λ, ∆νv = 111.87λ.

Figure 13. MSEr as a function of ∆νu(λ) in
the ribbon regions.

(a) (b)

Figure 14. Real part of visibility data in one of the
strings, (a) measured and (b) modeled, ∆νu = 121,
∆νv = 132.7.

Figure 15. MSEs as a function of ∆νu(λ) in the string regions.
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5. SIMULATIONS AND DISCUSSIONS

The effects of noise can be analyzed by defining an input signal-to-noise ratio (ISNR) [13]

ISNR = 20 log10

∥∥v̄ref
∥∥

2

‖v̄mea − v̄ref‖2

(10)

where v̄ref is the Fourier transform of the reference image without noise. In radio interferometry, the
amplitude and phase of the measured visibility data can be described as [29]

|vmea
nd

| = |vref
nd
|+ ∆vamp,nd

φmea
nd

= arg{vref
nd
}+ ∆φnd

where vref
nd

is the ndth reference visibility data without noise, and ∆vamp,nd
and ∆φnd

are the additive
zero-mean Gaussian noises to amplitude and phase, respectively. In the simulations, the standard
deviation of amplitude is set proportional to

∣∣vref
nd

∣∣.
The quality of reconstruction can be evaluated in terms of SNR, defined as [12]

SNR = 20 log10

∥∥x̄ref
∥∥

2

‖x̄ref − x̄‖2

(11)

When x̄ is closer to x̄ref , the SNR becomes higher.

Table 1. Performance of multi-feature algorithm.

visibility data optimal ∆νu(λ) of added feature SNR (dB)
v̄i only 65 15.884
add v̄o 142 21.468
add v̄r 112 22.331
add v̄s 119 23.414

Table 1 lists the optimal cell size and SNR performance in different visibility regions, based on
simulations. Table 2 lists the feasible range of baseline in different visibility regions, corresponding to
the optimal cell sizes in Table 1.

Table 2. Estimated cell sizes.

region ∆Bu (m) ∆Bv (m) sampling interval (s) total observation time (hr)
Inner patch 107 ∼ 171 117 ∼ 187 60 6
Outer patch 214 ∼ 321 234 ∼ 352 60 6

Ribbons 150 ∼ 278 164 ∼ 305 60 6
Strings 223 ∼ 300 245 ∼ 330 60 6

Figure 16 shows the images reconstructed with the multi-feature algorithm and the conventional
MS-CLEAN algorithm, respectively [10]. The corresponding SNR values are 23.414 dB and 19.417 dB,
respectively.

A desktop PC (ASUS AMD 750, Core i73.4 GHz, 32 Gbyte of RAM) is used to run the simulations.
If 6 hours of measurement is considered, at the sampling interval of 60 seconds, there will be 504,720
visibility data points. The multi-feature algorithm takes 856 seconds of CPU time, and the MS-CLEAN
algorithm takes 4,573 seconds.

If the sampling interval is reduced to 2 seconds, there will be 15,141,600 visibility data points. In
this case, the multi-feature algorithm takes 25,144 seconds of CPU time. The SNR of the reconstructed
image is 23.8 dB, which is slightly higher than that using 504,720 visibility data points.



50 Chiou, Kiang, and Mittra

(a) (b)

Figure 16. Reconstructed images, (a) with multi-feature algorithm and (b) with MS-CLEAN
algorithm [10].

Table 3 lists the estimated numbers of multiplication/division operations needed in the MS-
CLEAN, the PURIFY and the multi-feature algorithm, respectively; where M/D stands for
multiplication/division and A/S stands for addition/subtraction; TMS, TP and TMF are the total number
of iterations in MS-CLEAN, PURIFY and multi-feature algorithm, respectively; M is the total number
of grid points in the visibility distribution used in the multi-feature algorithm; TCG and TLS are the
number of iterations in the conjugate gradient method used in the PURIFY and that in the line
search method used in the BFGS algorithm; BMF is the number of surrounding grid points used in
the interpolation, which is 4 in the multi-feature algorithm. By simulations, TMB is larger than 2,000,
TMF is less than 250, and TLS is less than 10. The computation of ¯̄Φ† · ¯̄Φ is dependent on the interpolation
scheme and the measured visibility distribution, which is estimated as Nv ×N .

In this work, the parameters are chosen as TMS = 10, 000, Nv = 10, 000, 000, N = 2562, TCG = 256,
TP = 100, BMF = 4, TMF = 250, TLS = 10, and M = 20, 000. The numbers of M/D operations required
in the MS-CLEAN, the PURIFY and the multi-feature algorithms are 4.426 × 1013, 2.206 × 1014 and

Table 3. Number of multiplication/division operations.

MS-CLEAN [10] PURIFY [14] Multi-Feature

Process M/D Process M/D Process M/D

Dirty image N ×Nv
¯̄Φ† · ¯̄Φ Nv ×N

∇v̄f

(per iteration)
BMFNv+BMFNv

Dirty beam N ×Nv

¯̄Φ · x̄
(per iteration)

Nv log N
Line search

(per iteration)
TLS(BMF+2)Nv

Convolution

(per iteration)
N ×N

Conjugate

gradient

(per iteration)

TCG(2N2 + 6N) ¯̄F−1 M ×N

Total TMSN
2+2NvN Total

NvN+

TPTCG(2N2+6N)

+TPNv log N

Total

2TMFNvBMF

+TMFNvTLS

(BMF+2)+MN
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Figure 17. Average SNR as a function of ISNR over 100 simulations, ——–: multi-feature algorithm on
15,141,600 visibility data, −−−: multi-feature algorithm on 504,720 visibility data, −◦−: MS-CLEAN
algorithm [10] on 504,720 visibility data.

1.713 × 1011, respectively; leading to the ratio of 258.4 : 1287.6 : 1. This ratio increases if the number
of visibility measurement data or the image size is increased.

Figure 17 shows the average SNR of the reconstructed image, as a function of ISNR over 100
realizations of Monte-Carlo simulation. With 504,720 visibility data points, the multi-feature algorithm
achieves higher SNR than the MS-CLEAN algorithm. With the visibility data points increased to
15,141,600, the SNR achieved with the multi-feature algorithm gets even higher. The SNR values with
both the multi-feature algorithm and the MS-CLEAN algorithm saturate at high ISNR values, and the
SNR value with the former is higher than that with the latter.

6. CONCLUSION

A multi-feature algorithm is proposed to reconstruct the visibility distribution instead of the image itself.
The visibility data are categorized into four different feature regions, depending on the configuration of
stations and the target to be observed. The cell sizes in different regions are optimized separately, and
up to 15,000,000 visibility data points have been processed in the simulations, based on the LOFAR
configuration. Compared with PURIFY and MS-CLEAN algorithms, the computational time can be
reduced by a few hundreds to one thousand times, and expected to be even more if the amount of data
is increased. The multi-feature algorithm renders better image fidelity and is more resilient to noises.
This algorithm can be scaled up to accommodate vast amount of measurement data anticipated on the
next-generation telescopes.
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