Vol. 51
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-06-16
Design and Experiment of a Permanent Magnet Tubular Linear Generator for Wave Energy Conversion System
By
Progress In Electromagnetics Research C, Vol. 51, 45-53, 2014
Abstract
In this paper, flux of permanent magnet tubular linear generator (PMTLG) is modeled and analyzed. With the model, air-gap leakage flux coefficient can be expressed analytically in terms of permanent magnet dimensions and air-gap width. The validity of analytical expression of air-gap leakage flux coefficient is verified by finite element analysis (FEA) with a maximum error of 6.8%. Furthermore, longitudinal end flux's influence on the detent force of PMTLG is analyzed in detail with the model. A detent force minimization technique is deduced from the analysis results, and confirmed by FEA. Finally, after optimization of air-gap leakage flux coefficient and detent force, a PMTLG is built and experimented.
Citation
Zhongxian Chen, and Haitao Yu, "Design and Experiment of a Permanent Magnet Tubular Linear Generator for Wave Energy Conversion System," Progress In Electromagnetics Research C, Vol. 51, 45-53, 2014.
doi:10.2528/PIERC14041202
References

1. Prudell, J., M. Stoddard, E. Amon, T. K. A. Brekken, and A. V. Jouanne, "A permanent-magnet tubular linear generator for ocean wave energy conversion," IEEE Trans. Ind. Applicant, Vol. 46, No. 6, 2392-2400, 2010.
doi:10.1109/TIA.2010.2073433

2. Leijon, M, H. Bernhoff, O. Agren, J. Isberg, J., Sundberg, M. Berg, K. E. Karlsson, and A. Wolfbrandt, "Multiphysics simulation of wave energy to electric energy conversion by permanent magnet linear generator," IEEE Trans. Energy Conversion, Vol. 20, No. 1, 219-224, 2005.
doi:10.1109/TEC.2004.827709

3. Danielsson, O. and M. Leijon, "Flux distribution in linear permanent-magnet synchronous machines including longitudinal end effects," IEEE Trans. Magn., Vol. 43, No. 7, 3197-3201, 2007.
doi:10.1109/TMAG.2007.893535

4. Wang, J., D. Howe, and G. W. Jewell, "Fringing in tubular permanent magnet machines: Part I. Magnetic field distribution, flux linkage, and thrust force," IEEE Trans. Magn., Vol. 39, No. 6, 3507-3516, 2003.
doi:10.1109/TMAG.2003.819463

5. Tsai, W. and T. Chang, "Analysis of flux leakage in a brushless permanent-magnet motor with embedded magnets," IEEE Trans. Magn., Vol. 35, No. 1, 543-547, 1999.
doi:10.1109/20.737479

6. Hanselman, D. C., Brushless Permanent-magnet Motor Design, McGraw-Hill, New York, 1994.

7. Qu, R. and T. A. Lipo, "Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machines," Conf. Rec., IEEE-IAS Annul. Meeting, Vol. 2, 1281-1288, 2002.

8. Faiz, J. and M. E. Salari, "Comparison of the performance of two direct wave energy conversion systems: Archimedes wave swing and power buoy," J. Marine. Sci. Appl., Vol. 10, 421-428, 2011.

9. Wang, J., M. Inoue, Y. Amara, and D. Howe, "Cogging-force-reduction techniques for linear permanent-magnet machines," IEE Proc. --- Electr. Power Appl., Vol. 152, No. 3, 731-738, 2005.
doi:10.1049/ip-epa:20045254

10. Lee, J., H. W. Lee, Y. D., Chun, M. Sunwoo, and J. P. Hong, "The performance prediction of controlled-PMLSM in various design schemes by FEM," IEEE Trans. Magn., Vol. 36, No. 4, 1902-1905, 2000.
doi:10.1109/20.877818

11. Ahmad, M. E., H. W. Lee, and M. Nakaoka, "Detent force reduction of a tubular linear generator using an axial stepped permanent magnet structure," Journal of Power Electronics, Vol. 6, No. 4, 290-296, 2006.

12. Bianchi, N., S. Bolognani, and A. D. F. Cappello, "Reduction of cogging force in PM linear motors by pole-shifting," IEE Proc. --- Electr. Power Appl., Vol. 152, No. 3, 703-709, 2005.
doi:10.1049/ip-epa:20045082

13. Ji, J., J. Zhao, W. Zhao, Z. Fang, G. Liu, and Y. Du, "New high force density tubular permanent-magnet motor," IEEE Trans. Appl. Supercon, Vol. 24, No. 3, 5200705, 2014.

14. Ji, J., S. Yan, W. Zhao, G. Liu, and X. Zhu, "Minimization of cogging force in a novel linear permanent-magnet motor for artificial hearts," IEEE Trans. Magn., Vol. 49, No. 7, 3901-3904, 2013.
doi:10.1109/TMAG.2013.2247028