Vol. 46
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-12-13
Two-Dimensional Angles Estimation Method and Its Improved Methods for Single Source with a Sparse Array
By
Progress In Electromagnetics Research C, Vol. 46, 41-50, 2014
Abstract
Based on two orthogonal linear sparse arrays (LSA) which consist of the coupled-sensors (CSs), a high resolution and no ambiguity (HRNA) method is proposed to estimate the two-dimensional (2D) angles of single source. The HRNA method first constructs a new covariance matrix to achieve no ambiguity independent angles estimation by using the covariance matrix generated by each LSA, and then computes joint elevation and azimuth angles by utilizing both the estimated independent angles and triangular relationship. For large array aperture of the LSA, the HRNA method earns a high angle resolution; however, its independent angles estimation accuracy is slightly lower than the multiple signal classification (MUSIC) with a uniform linear array (ULA). In order to enhance the independent angle estimation performance, first improved HRNA (FI-HRNA) method is developed based on the HRNA and MUSIC methods. Further, in order to decrease the computational cost, second improved HRNA (SI-HRNA) method is presented based on FI-HRNA and MUSIC methods. The proposed SI-HRNA method obtains high angle resolution, high angle estimation accuracy and low computational load. In addition, the spacing between two adjacent CSs is not limited, and thus the angle resolution and estimation accuracy can be set according to practical demand. Numerical experiment and comparison with the other existing algorithms verify the effectiveness and superior performance of the method proposed in this paper.
Citation
Jia-Jia Jiang, Fa-Jie Duan, Yan-Chao Li, and Xiang-Ning Hua, "Two-Dimensional Angles Estimation Method and Its Improved Methods for Single Source with a Sparse Array," Progress In Electromagnetics Research C, Vol. 46, 41-50, 2014.
doi:10.2528/PIERC13110304
References

1. Ying, D. W. and Y. H. Yan, "Robust and fast localization of single speech source using a planar array," IEEE Signal Processing Letters, Vol. 20, No. 9, 909-912, 2013.
doi:10.1109/LSP.2013.2266337

2. Cheung, K. W., H. C. So, W. K. Ma, and Y. T. Chan, "Least squares algorithms for time-of-arrival-based mobile location," IEEE Transactions on Signal Processing, Vol. 52, No. 4, 1121-1130, 2004.
doi:10.1109/TSP.2004.823465

3. Stoica, P. and J. Li, "Source localization from range-difference measurements," IEEE Signal Processing Magazine, Vol. 23, No. 6, 63{39, Processing Magazine, Vol. 23, No. 6, 63-39, 2006.
doi:10.1109/SP-M.2006.248717

4. Sayed, A. H, A. Tarighat, and N. Khajehnouri "Network-based wireless location: Challenges faced in developing techniques for accurate wireless location information," IEEE Signal Processing Magazine, Vol. 22, No. 4, 24-40, 2005.
doi:10.1109/MSP.2005.1458275

5. Beck, A. and D. Pan, On the solution of the GPS localization and circle fitting problems SIAM J. Optim., Vol. 22, No. 1, 108-134, 2012.
doi:10.1137/100809908

6. Heidenreich, P., A. M. Zoubir, and M. Rubsamen, "Joint 2-D DOA estimation and phase calibration for uniform rectangular arrays," IEEE Transactions on Signal Processing, Vol. 60, No. 9, 4683-4693, 2012.
doi:10.1109/TSP.2012.2203125

7. Doroslovacki, M. I. and E. G. Larsson, "Nonuniform linear antenna arrays minimising Cramer-Rao bounds for joint estimation of single source range and direction of arrival," IEE Proc. | Radar Sonar Navig, 152-4, August 2005.
doi:10.1137/070698014

8. Beck, A., M. Teboulle, and Z. Chikishev, "Iterative minimization schemes for solving the single source localization problem," SIAM J. Optim., Vol. 19, No. 3, 1397-1416, 2008.

9. Reed, J. D, R. M. Buehrer, and C. R. C. M. da Silva, "An optimization approach to single-source localization using direction and range estimates," IEEE Global Telecommunications Conference, 1-5, 2009.
doi:10.1109/TSP.2013.2264814

10. Qi, H.-D., N. Xiu, and X. M. Yuan, "A lagrangian dual approach to the single-source localization problem," IEEE Transactions on Signal Processing, Vol. 61, No. 15, 3815-3826, August 2013.
doi:10.1049/el.2013.1210

11. Jiang, J. C., P. Wei, and L. Gan, "Source location based on independent doublet array," Electronics Letters, Vol. 49, No. 14, 2013.

12. Wu, Y. T. and H. C. So, "Simple and accurate two-dimensional angle estimation for a single source with uniform circular array," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 78-80, 2008.
doi:10.1109/LAWP.2012.2213792

13. Liao, B., Y.-T. Wu, and S.-C. Chan, "A generalized algorithm for fast two-dimensional angle estimation of a single source with uniform circular arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 984-986, 2012.
doi:10.1109/PIMRC.2011.6139850

14. Bellili, F., S. Affes, and A. Stephenne, "Second-order moment-based direction finding of a single source for ULA systems," 2011 IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), 1944-1947, 2011.
doi:10.1109/TIT.2011.2111710

15. Bianchi, P., M. Debbah, M. Maida, and J. Najim, "Performance of statistical tests for single-source detection using random matrix theory," IEEE Transactions on Information Theory, Vol. 57, No. 4, 2400-2419, 2011.
doi:10.1109/SSP.2011.5967645

16. Gazzah, H. and J.-P. Delmas, "Spectral efficiency of beamforming-based parameter estimation in the single source case," 2011 IEEE Statistical Signal Processing Workshop (SSP), 153-156, 2011.

17. Yuan, X., "Direction-finding wideband linear FM sources with triangular arrays," IEEE Transactions on Aerospace and Electronic Systems, 48-3, July 2012.

18. Schmidt, R. O., "Multiple emitter location and signal parameters estimation," IEEE Trans. on Antennas and Propagation, Vol. 34, No. 3, 267-280, 1986.
doi:10.1109/LAWP.2007.907913

19. Gu, J.-F. and P. Wei, "Joint SVD of two cross-correlation matrices to achieve automatic pairing in 2-D angle estimation problems," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 553-556, 2007.
doi:10.1109/SPECT.1988.206185

20. Bresler, Y., "Maximum likelihood estimation of a linearly structured covariance with application to antenna array processing," ASSP Workshop on Spectrum Estimation Model., 172-175, 1988.
doi:10.1109/29.32276

21. Roy, R. and T. Kailath, "ESPRIT --- Estimation of signal parameters via rotational invariance techniques," IEEE Trans. on Acoust., Speech, Signal Process., Vol. 37, 984-995, 1989.
doi:10.1109/APS.2010.5560953

22. Porozantzidou, M. G. and M. T. Chryssomallis, "Azimuth and elevation angles estimation using 2-D music algorithm with an L-shape antenna," 2010 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-4, July 2010.

23. Jiang, J. J., D. Fajie, and C. Jin, "Three-dimensional localization algorithm for mixed near-field and far-¯eld sources based on ESPRIT and MUSIC method," Progress In Electromagnetics Research, Vol. 136, 435-456, 2013.

24. Cheng, S.-C. and K.-C. Lee, "Reducing the array size for DOA estimation by an antenna mode switch technique," Progress In Electromagnetics Research, Vol. 131, 117-134, 2012.

25. Liang, J. and D. Liu, "Two L-shaped array-based 2-D DOAs estimation in the presence of mutual coupling," Progress In Electromagnetics Research, Vol. 112, 273-298, 2011.
doi:10.2528/PIER10052811

26. Li, Y. and H. Ling, "Improved current decomposition in helical antennas using the ESPRIT algorithm," Progress In Electromagnetics Research, Vol. 106, 279-293, 2010.