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Two-dimensional Angles Estimation Method and Its Improved
Methods for Single Source with a Sparse Array
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Abstract—Based on two orthogonal linear sparse arrays (LSA) which consist of the coupled-sensors
(CSs), a high resolution and no ambiguity (HRNA) method is proposed to estimate the two-dimensional
(2D) angles of single source. The HRNA method first constructs a new covariance matrix to achieve no
ambiguity independent angles estimation by using the covariance matrix generated by each LSA, and
then computes joint elevation and azimuth angles by utilizing both the estimated independent angles
and triangular relationship. For large array aperture of the LSA, the HRNA method earns a high angle
resolution; however, its independent angles estimation accuracy is slightly lower than the multiple signal
classification (MUSIC) with a uniform linear array (ULA). In order to enhance the independent angle
estimation performance, first improved HRNA (FI-HRNA) method is developed based on the HRNA
and MUSIC methods. Further, in order to decrease the computational cost, second improved HRNA
(SI-HRNA) method is presented based on FI-HRNA and MUSIC methods. The proposed SI-HRNA
method obtains high angle resolution, high angle estimation accuracy and low computational load.
In addition, the spacing between two adjacent CSs is not limited, and thus the angle resolution and
estimation accuracy can be set according to practical demand. Numerical experiment and comparison
with the other existing algorithms verify the effectiveness and superior performance of the method
proposed in this paper.

1. INTRODUCTION

Single source localization is one of the most important topics in the speech localization [1], mobile
phones localization [2–4], GPS localization [5], many radar systems [6], etc. Many relevant near-field
(NF) and far-field (FF) source localization algorithms [1–17] for single source have been developed
recently, such as these algorithms [2–5, 7–11] for NF single source and those [1, 12–17] for FF single
source. For the NF single source localization, Cheung et al. [2] proposed a least squares algorithm to
estimate the three-dimensional coordinate of single source, however, this algorithm requires a sufficiently
high signal-to-noise ratio (SNR) condition in order to obtain a good estimation performance. In the
process of solving the single source localization, an enhanced least squares method is presented in [3].
A circle fitting method in [5] is developed to achieve the GPS localization. Doroslovacki and Larsson [7]
study different antenna placements issue in non-uniform linear arrays for the joint estimation of the
range and direction of arrival (DOA), and some useful conclusions are provided. In addition, [8–11] also
give some beneficial conclusions about NF single source localization.

For the FF single source angle estimation, a computationally efficient algorithm is presented to
estimate the 2D angles with a uniform circle array in [12], and it is based on an assumption that the
number of the sensors is even. Later on, another improved algorithm [13] is proposed to overcome the
deficiency of the algorithm in [12]. However, these two algorithms in [12, 13] are only able to be used
in uniform circle array and need extra method to solve the phase ambiguity issue. In [14], a single
source DOA estimation algorithm, based on the second-order- statistic, is developed; in spite of using a
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ULA, this algorithm still requires a complex process of solving the phase ambiguity. In [15], Bianchi et
al. make a detailed statistical analysis for single source detection using random matrix theory. In [17],
a novel algorithm is proposed to estimate the 2D angles of linear frequency-modulated signal, but it
strongly depends on the type of source.

In this paper, we present a HRNA method for single source 2D angles estimation and then propose
two improved methods (FI-HRNA and SI-HRNA methods) to enhance the angle estimation performance
and decrease the computational complexity. Firstly, the proposed methods are based on two special
LSAs, and note that the LSA consists of several CSs and the spacing between CSs can be set to very large
according to both the large array aperture demand and high angle resolution request further. Secondly,
although the LSA with large array aperture is used, the HRNA method can automatically solve the
phase ambiguity problem. Thirdly, compared with the proposed HRNA method, the first improved
method, FI-HRNA, gains a better angle estimation performance, and it is even more remarkable that
its angle estimation accuracy can be improved continually as the array aperture increases constantly.
Finally, the second improved method, SI-HRNA, inherits the merits of the FI-HRNA method, overcome
the shortcoming of computational load, and thus has high angle estimation performance, high angle
resolution and low computational cost.

2. PROBLEM FORMULATION

2.1. Review of Data Model of ULA

A ULA is composed of N sensors (see Fig. 1). The inter-sensor spacing is d. Assume one narrow-band
source from FF impinging on this ULA from DOA φr.

The ULA output x(t) = [x1, x2, . . . , xN ]T can be modeled as

x(t) = a(φ)s(t) + n(t) (1)

where a(φ) = [a1(φ), a2(φ), . . . , aN (φ)]T = [1, ejΩ, . . . , ej(N−1)Ω]T , n(t) = [n1(t), n2(t), . . . , nN (t)]T ,
s(t) is a source, ni(t) is the noise in the i-th sensor, and Ω = [−2πd cosφ/λ], where λ is the wavelength
of source and φ ∈ (0, π] [18]. T denotes the transpose. The covariance matrix R1 of this ULA is then
given by

R1 =E
{
x(t)xH(t)

}
=σsa(φ)aH(φ)+σnI=




σs + σn σse
−jΩ σse

−j2Ω . . . σse
−j(N−1)Ω

σse
jΩ σs + σn σse

−jΩ . . . σse
−j(N−2)Ω

σse
j2Ω σse

jΩ σs + σn . . . σse
−j(N−3)Ω

...
...

...
. . .

...
σse

j(N−1)Ω σse
j(N−2)Ω σse

jΩ . . . σs + σn




(2)

where σs is the signal power, σn the noise variance, and H the conjugate transpose.
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Figure 1. The ULA configuration.
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Figure 2. The two orthogonal linear sparse array
configuration.
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2.2. Data Model of Two Orthogonal LSAs

The array is composed of two orthogonal LSAs, and each LSA consists of M CSs as shown in Fig. 2.
The inter-sensor spacing of CS is d, and inter-sensor spacing between CSs is D with D = kd (k is a
positive integer and k ≥ 3 for a LSA). Single narrow-band source from FF impinges on two LSAs from
independent angles αr, αr ∈ (0, π] and βr, βr ∈ (0, π], respectively. Note that for convenience, the
sensor on the left of the m-th CS on the Y axis is called CSm 1, and one on the right of the m-th CS is
called CSm 2.

The LSA output y(t) = [y1, y2, . . . , y2M−1, y2M ]T on the Y axis can be modeled as
y(t) = b(α)s(t) + e(t) (3)

where b(α) = [b1(α), b2(α), . . . , b2M−1(α), b2M (α)]T = [1, ejΦ, . . . , ej[k(M−1)]Φ, ej[k(M−1)+1]Φ]T , Φ =
[−2πd cosα/λ], e(t) = [e1(t), e2(t), . . . , e2M−1(t), e2M (t)]T , and ei(t) is the noise in the i-th sensor.

The covariance matrix of this LSA on the Y axis is then given by
Ry = E

{
y(t)yH(t)

}
= σ2

sb(α)bH(α) + σ2
nI

=




σs + σn σse
−jΦ σse

−jkΦ . . . σse
−j[(M−1)k+1]Φ

σse
jΦ σs + σn σse

−j(k−1)Φ . . . σse
−j(M−1)kΦ

σse
jkΦ σse

j(k−1)Φ σs + σn . . . σse
−j[(M−2)k+1]Φ

...
...

...
. . .

...
σse

j[(M−1)k+1]Φ σse
j(M−1)kΦ σse

j[(M−2)k+1]Φ . . . σs + σn




(4)

Throughout the paper, the following hypotheses are assumed to hold: 1) The incoming source signal
is narrow-band, zero-mean complex Gaussian random processes; 2) The noise is zero-mean, complex
circular Gaussian, and spatially uniformly white random processes, and is statistically independent of
the source signal; 3) The inter-sensor spacing d of each CS satisfies d ≤ λ/2; 4) The inter-sensor spacing
between CSs D satisfies D = kd, and k is a positive integer and more that 2 for a LSA.

2.3. Joint 2D Angles and Angle Ambiguity

On the one hand, the relationship between array configuration for independent and joint 2D angles
estimation is illustrated by [19] {

sin θr sinϕr = cosαr

sin θr cosϕr = cosβr
(5)

where θr and ϕr denote the elevation and azimuth angles, respectively.
On the other hand, when there exists one source from angle αr (βr), several angle estimates, which

contain one real and multiple false angle estimates, can be obtained by utilizing the MUSIC method
in [18] to the LSA on the Y (X) axis, which indicates there exists angle ambiguity when the LSA is used.
Fig. 3 gives an example of angle ambiguity. In this experiment, the LSA on the Y axis in Fig. 2 and a
ULA are used, M is set to 3, the input signal-to-noise ratio (SNR) of source is 0 dB, the independent
angle αr of source is 10◦, and the number of snapshots is 1000.

Therefore, from the relationship for independent and joint 2D angles, one can see that, in order to
obtain the joint elevation and azimuth angles, we need to estimate no ambiguity independent angles
αr and βr.

3. PROPOSED METHOD

In order to remove the angle ambiguity issue and then obtain right and independent angles estimates,
we propose the following HRNA method. First of all, R2 can be obtained from R1 as [18]

R2 = R1 − diag(σn) = σsa(φ)aH(φ) =




σs σse
−jΩ σse

−j2Ω . . . σse
−j(N−1)Ω

σse
jΩ σs σse

−jΩ . . . σse
−j(N−2)Ω

σse
j2Ω σse

jΩ σs . . . σse
−j(N−3)Ω

...
...

...
. . .

...
σse

j(N−1)Ω σse
j(N−2)Ω σse

jΩ . . . σs




(6)
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where σn can be estimated through σ̂n = 1
N−1

∑N−1
n=1 λn [20], λn denotes the n-th smallest eigenvalue of

the matrix R1. Likewise, R̄y can be obtained from Ry as

R̄y = Ry − diag(σn) = σ2
sb(α)bH(α)

=




σs σse
−jΦ σse

−jkΦ . . . σse
−j[(M−1)k+1]Φ

σse
jΦ σs σse

−j(k−1)Φ . . . σse
−j(M−1)kΦ

σse
jkΦ σse

j(k−1)Φ σs . . . σse
−j[(M−2)k+1]Φ

...
...

...
. . .

...
σse

j[(M−1)k+1]Φ σse
j(M−1)kΦ σse

j[(M−2)k+1]Φ . . . σs




(7)

where σn can be estimated through σ̂n = 1
2M−1

∑2M−1
m=1 λm [20], λm is the m-th smallest eigenvalue of the

matrix Ry and diag{·} defines a diagonal matrix. From (6), one can observe the following relationship:

R2(m, i)/R2(m− 1, i) = ejΩ (8)

where R2(m, i) denotes the (m, i)-th element of the matrix R2. And the matrix R2 is a Hermitain
Toeplitz matrix [18], while the matrix R̄y has not a Hermitain Toeplitz structure characteristic.

If directly using the matrix Ry or R̄y to perform the MUSIC method for angle estimation, the angle
ambiguity problem can be not overcome, which has been proved in Fig. 3. Therefore, in the following,
by utilizing the special characteristic denoted by (6), which ensures there is no angle ambiguity, we will
construct a new matrix RTy to let it have the same matrix structure as the matrix R2, to overcome the
angle ambiguity problem.

We construct a new vector z = [z1, z2, . . . , z(M−1)k+1]T , and define the following relationship:

z1 = σ̂s =
1

2M

2M∑

i=1

R̄y(i, i), i = 1, 2, . . . , 2M (9)

zq = z1ρ
q−1, q = 2, 3, . . . , (M − 1)k + 2 (10)

ρ =
1

2M2

2M∑

i=1

M∑

m=1

R4(2m, i)/R4(2m− 1, i) (11)

where R̄y(m, i) is the (m, i)-th element of the matrix R̄y. Note that one can observe from (11) that ρ
denotes an estimate of ejΦ. Then we construct a [(M − 1)k + 2]× [(M − 1)k + 2] Toeplitz matrix RTy

Figure 3. The MUSIC spectrum versus both the LSA and ULA.
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whose first column and row are z and zH , respectively

RTy =




z1 z∗2 . . . z∗(M−1)k+2

z2 z1
. . .

...
... . . .

. . . z∗2
z(M−1)k+2 . . . z2 z1




=




z1 z1ρ
−1 . . . z1ρ

−[(M−1)k+1]

z1ρ z1
. . .

...
... . . .

. . . z1ρ
−1

z1ρ
[(M−1)k+1] . . . z1ρ z1




(12)

From RTy, one can find the following relationship like (8)

RTy(m, i)/RTy(m− 1, i) = ejΦ (13)

where RTy(m, i) denotes the (m, i)-th element of the matrix RTy. Comparing (12), (13) and (6), (8),
one can find that RTy has the same characteristic as R2 and can be given by (14), and thus we can use
RTy to obtain no ambiguity and independent angle estimation.

RTy = σ̂sc(θ)cH(θ) (14)

where c(θ) = [1, ρ, ρ2, . . . , ρ[(M−1)k+1]]T .
In fact, the matrix RTy can be considered as a covariance-like, which is generated by a special

ULA. And this special ULA is composed of both real CSs and fictitious sensors between real CSs.
Therefore, based on RTy and using the MUSIC [18] or computationally efficient ESPRIT [21] method,
no ambiguity and independent angle estimate, denoted by α̂r, can be obtained.

Likewise, similar to the estimation process of no ambiguity and independent angle αr, we first
compute the two matrices Rx and R̄x similar to (4) and (7) respectively, then construct another Toeplitz
matrix RTx like RTy, and finally using the MUSIC or ESPRIT method, no ambiguity and independent
angle estimate, denoted by β̂r, can be obtained.

4. IMPROVED METHOD

Since the proposed method is based on the LSA, thus it has larger array aperture than a ULA when
the same number of sensors is used, which indicates that the proposed method with LSA is able to gain
a better independent angle resolution than the MUSIC or ESPRIT method with ULA.

By simulations, the fact, that the proposed method has a superior angle resolution, has been
verified; however, it is found that with the finite samples and SNR, its independent angle estimation
performance is slightly below the MUSIC and ESPRIT methods.

4.1. First Improved HRNA (FI-HRNA) Method for High Performance DOA Estimation

In order to achieve high performance angle estimation, first improved HRNA method is proposed.
With the LSA on the Y axis, we first use the MUSIC method to obtain all independent angles

estimates {α̂1, α̂2, . . . , α̂P }, which contain one real angle estimate αr and P − 1 false angle ones, by
one-dimensional (1D) search in interval (0, π]. Then we extract the fine but no ambiguity and real angle
estimate by solving the following constrained optimization problem:

α̂fr = min
i=1,...,P

(α̂i − α̂r)2 (15)

where α̂fr denotes the fine but no ambiguity and real angle estimate.

4.2. Second Improved HRNA (SI-HRNA) Method for Low Computational Load

In order to obtain all independent angles estimates {α̂1, α̂2, . . . , α̂P }, the first improved HRNA method
in Section 4.1 needs to perform 1D search in interval (0, π], which will bring out a larger computational
cost.

In order to achieve high performance angle estimation and simultaneously decrease the
computational load, second improved HRNA method is presented as: Step 1) based on the proposed
HRNA method in Section 3, obtain the independent angle estimate α̂r; Step 2) reset a search interval
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[α̂r − ∆α, α̂r + ∆α], where ∆α is a constant, less than π/2 and can be adjusted according to the
estimation accuracy of angle estimate α̂r; Step 3) with the LSA, use the MUSIC method to perform a
search in interval [α̂r−∆α, α̂r +∆α] so as to obtain the independent angles estimates {α̂1, α̂2, . . . , α̂G}
which are close to angle estimate α̂r and belong to the interval [α̂r − ∆α, α̂r + ∆α]; Step 4) similar
to (15), use (16) to extract the fine but no ambiguity angle estimate.

α̂fr = min
i=1,...,G

(α̂i − α̂r)2 (16)

On the one hand, the search range α̂r +∆α−(α̂r−∆α) = 2∆α of the interval [α̂r−∆α, α̂r +∆α] is
much smaller than the search range π−0 = π of the interval (0, π]; on the other hand, the computational
load is less than (15) for G ¿ P ; therefore, the SI-HRNA method in Section 4.2 has lower computational
cost than the FI-HRNA method in Section 4.1 and the same independent angle estimation accuracy as
one.

5. SUMMARY OF THE PROPOSED METHODS

The proposed methods can be described as follows: Step 1): Construct matrices RTy and RTx

from Ry and Rx respectively, and then obtain the independent angle estimates α̂r and β̂r based
on RTy and RTx respectively by utilizing the computationally efficient ESPRIT method. Step 2):
Determine the small range search intervals [α̂r −∆α, α̂r + ∆α] and [β̂r −∆β, β̂r + ∆β], respectively.
Step 3): Apply the MUSIC method to matrices Ry and Rx respectively, and obtain independent
angle estimates {α̂1, α̂2, . . . , α̂G} and {β̂1, β̂2, . . . , β̂Q} respectively through 1D search in intervals
[α̂r−∆α, α̂r +∆α] and [β̂r−∆β, β̂r +∆β], respectively. Step 4): According to α̂fr = min

i=1,...,G
(α̂i− α̂r)2

and β̂fr = min
i=1,...,Q

(β̂i − β̂r)2 respectively, obtain the independent, no ambiguity, fine and real angle

estimates α̂fr and β̂fr. Step 5): Based on (5), compute elevation and azimuth angles from independent
angle estimates α̂fr and β̂fr.

6. SIMULATIONS

In this section, to verify the performance of the proposed and its two improved methods, various typical
numerical experiments are performed. Since the Joint SVD (JSVD) method in [19] also computes the
joint elevation and azimuth angles by first estimating independent angles, thus the proposed methods
is compared with both the MUSIC method [18, 22] and JSVD method [19]. The proposed methods
uses a L-shaped array placed in the X-Y plane, and each LSA branch (see Fig. 2) consists of 6 omni-
directional sensors with d = λ/2; however, the JSVD method and MUSIC method use the L-shaped
array placed in the Y -Z and X-Y plane respectively, and their each array branch is ULA rather than
LSA and consists of 6 omni-directional sensors with d = λ/2.

In the first experiment, we compare the elevation and azimuth angles estimation performance as
SNR changes. The performances of the mentioned methods are measured by estimated root-mean-square
error (RMSE) [23, 24] of 500 independent Monte Carlo experiments [25, 26]. The snapshots number is
600, and elevation and azimuth angles are 45◦ and 120◦, respectively. Figs. 4(a)–(b) and 5(a)–(b) show
the RMSEs of angles estimates with D = 5d and D = 16d, respectively, for the proposed methods,
JSVD method [19] and 2D MUSIC method [22].

On the one hand, from Figs. 4(a)–(b), some results can be obtained as: 1) the proposed HRNA
method has the lowest elevation and azimuth angles estimation accuracy, while the 2D MUSIC method
in [22] gains better elevation and azimuth angles estimation performance than the HRNA one; this
is because the 2D MUSIC method directly utilizes the array covariance matrix to achieve the angles
estimation, while the HRNA method needs to use the estimated noise variance σ̂n to form a new
covariance matrix-like so as to complete the elevation and azimuth angles estimation; 2) the JSVD
method obtains slightly smaller RMSEs of both elevation and azimuth angles estimates than the 2D
MUSIC method, which is consistent with the analysis and results in [19]; 3) the elevation and azimuth
angles estimation accuracy of the SI-HRNA method far exceeds the HRNA, 2D MUSIC and JSVD
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(a) (b)

Figure 4. (a) Elevation estimation results with D = 5d. (b) Azimuth estimation results with D = 5d.

(a) (b)

Figure 5. (a) Elevation estimation results with D = 16d. (b) Azimuth estimation results with D = 16d.

methods, which is because that the SI-HRNA method has much larger array aperture than other three
methods; 4) the elevation angle estimation performance of both the HRNA and SI-HRNA methods
is nearly equal to their azimuth angle estimation performance, however, the azimuth angle estimation
performance of both 2D MUSIC and JSVD methods is slightly below their elevation angle estimation
performance; this is because that both the HRNA and SI-HRNA methods first independently obtain the
estimates (α̂r and β̂r) of two independent 2D angles (αr and βr) using the same computational procedure,
and then compute the elevation and azimuth angles by utilizing (5) (in other words, the estimation
processes of elevation and azimuth angles are equal and independent with each other), however, the
azimuth angle estimates of both 2D MUSIC and JSVD methods are based on their elevation angle ones.
On the other hand, comparing Figs. 4(a)–(b) and Figs. 5(a)–(b), one can find that whether D = 5d or
D = 16d, the elevation and azimuth angles estimation accuracy of the proposed HRNA method changes
little, while the proposed SI-HRNA method obtains better elevation and azimuth angles estimation
accuracy with D = 16d than that with D = 5d. This can be explained that the array aperture with
D = 16d is greater than one with D = 5d. Therefore, when a very high accuracy angles estimation
result is asked and the number of sensors is not allowed to increase, one only needs to adjust the array
aperture (namely, the size of k), and thus a higher angles resolution can be obtained accordingly for
the large array aperture. Besides, Figs. 4(a)–(b) and Figs. 5(a)–(b) show that even at low SNR, the
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proposed SI-HNRA method is able to complete high accuracy elevation and azimuth angles estimation.
In the second experiment, we examine the angles resolution and state the setup process of smaller

computational cost search interval [α̂r −∆α, α̂r + ∆α] and [β̂r −∆β, β̂r + ∆β]. Note that in Section 3,
we have indicated that the MUSIC or computationally efficient ESPRIT method can be used to the
constructed Toeplitz matrices RTx or RTy so as to obtain no ambiguity and independent angles
estimates, however, in practical, in order to decrease the computational load, the computationally
efficient ESPRIT method is most likely to be chosen. However, in this experiment, to obtain MUSIC
spectrum to compare the angles resolution, we use the MUSIC method to estimate no ambiguity and
independent angles. Moreover, the angles resolution of the proposed HRNA and FI-HRNA methods is
compared with the 1D MUSIC method in [18]. Two independent angles αr and βr are set to 30◦ and
60◦, respectively. The SNR and number of snapshots are set to 0 dB and 500, respectively. The relevant
array aperture factor D is set to D = 16d. Figs. 6(a)–(b) show that MUSIC angles spectrum of three
methods (the HRNA, 2D MUSIC and FI-HRNA methods).

(a) (b)

Figure 6. (a) The elevation angle MUSIC spectrum. (b) The azimuth angle MUSIC spectrum.

It can be observed easily from Figs. 6(a)–(b) that the proposed HRNA and FI-HRNA methods with
LSA gains higher angles resolution than MUSIC method with ULA, which is because that the proposed
HRNA and FI-HRNA methods have larger array aperture than the MUSIC method. More important,
since the array aperture of the proposed HRNA and FI-HRNA methods can be adjusted according to
practical demand, a very high angles resolution can be achieved when array aperture is very large. In
addition, Figs. 6(a)–(b) show that angles estimate of the HRNA method is close to one of the FI-HRNA
method, and thus the angles search interval [α̂r −∆α, α̂r + ∆α] and [β̂r −∆β, β̂r + ∆β] can be set to a
very small size, such as ∆α = 10◦ and ∆β = 10◦, which can highly decrease the computational cost for
search and the proposed SI-HRNA method is just based on this idea. Moreover, the larger the array
aperture is, the smaller the angles search interval can be set to. Finally, comparing Figs. 4(a)–(b), 5(a)–
(b) and Figs. 6(a)–(b), one can find that although the angles estimation performance of the proposed
HRNA method is lower than the MUSIC method, its angles resolution is superior to the MUSIC method
for large array aperture.

7. CONCLUSION

In this paper, based on a two orthogonal LSA, a HRNA and its two improved methods (FI-HRNA and SI-
HRNA methods) are proposed to estimate the 2D angles of single source. Although the angles estimation
accuracy of the HRNA method is lower than the MUSIC method, its angles resolution is superior to the
MUSIC method. The FI-HRNA method overcomes the disadvantage of low angles estimation accuracy,
and obtains high angles estimation accuracy and resolution. The SI-HRNA method not only holds
the advantage of high angles estimation accuracy and resolution of the FI-HRNA method, but also
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highly decreases the computational load. Although based on the sparse array, the proposed HRNA and
improved methods is able to automatically overcome angle ambiguity problem of sparse array and the
two improved methods (FI-HRNA and SI-HRNA methods) can achieve high angles estimation accuracy
and resolution. What’s more, when the number of sensors is not allowed to increase, the proposed
FI-HRNA and SI-HRNA methods can obtain a desirable angles estimation accuracy and resolution by
adjusting the relevant array aperture factor D (namely, adjust the array aperture).
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