1. Madsen, E. L., E. Kelly-Fry, and G. R. Frank, "Anthropomorphic phantoms for assessing systems used in ultrasound imaging of the compressed breast," Ultrasound in Medicine and Biology, Vol. 14, 183-201, 1988.
doi:10.1016/0301-5629(88)90061-0
2. Surry, K. J. M., H. J. B. Austin, A. Fenster, and T. M. Peters, "Poly (vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging," Physics in Medicine and Biology, Vol. 49, 5529-5546, 2004.
doi:10.1088/0031-9155/49/24/009
3. Fong, M. P., D. C. Keil, M. D. Does, and J. C. Gore, "Polymer gels for magnetic resonance imaging of radiation dose distributions at normal room atmosphere," Physics in Medicine and Biology, Vol. 46, 3105-3113, 2001.
doi:10.1088/0031-9155/46/12/303
4. Davis, S. K., H. Tandradinata, S. C. Hagness, and B. D. Van Veen, "Ultrawideband microwave breast cancer detection: A detection-theoretic approach using the generalized likelihood ratio test," IEEE Transactions on Biomedical Engineering, Vol. 52, 1237-1250, 2005.
doi:10.1109/TBME.2005.847528
5. Fukunaga, K., K. S. Watanabe, and Y. Yamanaka, "Dielectric properties of tissue-equivalent liquids and their effects on specific absorption rate," IEEE Transactions on Biomedical Engineering, Vol. 46, 126-129, 2004.
6. Fukunaga, K., S. Watanabe, H. Asou, and K. Sato, "Dielectric properties of non-toxic tissue-equivalent liquids for radiowave safety tests," 2005 IEEE International Conference Dielectric Liquids, Vol. 26, 425-428, 2005.
7. Chang, J. T., M. W. Fanning, P. M. Meaney, and K. D. Paulsen, "A conductive plastic for simulating biological tissue at microwave frequencies," IEEE Transactions on Electromagnetic Compatibility, Vol. 42, 76-81, 2000.
doi:10.1109/15.831707
8. Youngs, I. J., A. S. Treen, G. Fixter, and S. Holden, "Design of solid broadband human tissue simulant materials," IEE Proceedings Science, Measurements and Technology, Vol. 149, 323-328, 2002.
doi:10.1049/ip-smt:20020647
9. Gabriel, C., "Tissue equivalent material for hand phantoms," Physics in Medicine and Biology, Vol. 52, 4205-4210, 2007.
doi:10.1088/0031-9155/52/14/012
10. Nikawa, Y., M. Chino, and K. Kikuchi, "Soft and dry phantom modeling material using silicone rubber with carbon fiber," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, 1949-1953, 1996.
doi:10.1109/22.539954
11. Lazebnik, M., E. L. Madsen, G. R. Frank, and S. C. Hagness, "Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications," Physics in Medicine and Biology, Vol. 50, 4245-4258, 2005.
doi:10.1088/0031-9155/50/18/001
12. Mazzara, G. P., R. W. Briggs, Z. Wu, and B. G. Steinbach, "Use of a modified polysaccharide gel in developing a realistic breast phantom for MRI," Magnetic Resonance Imaging, Vol. 14, 639-648, 1996.
doi:10.1016/0730-725X(96)00054-9
13. Kato, H., M. Hiraoka, and T. Ishida, "An agar phantom for hyperthermia," Medical Physics, Vol. 13, 396-398, 1986.
doi:10.1118/1.595882
14. Robinson, M. P., M. J. Richardson, J. L. Greent, and A. W. Preece, "New materials for dielectric simulation of tissues," Physics in Medicine and Biology, Vol. 36, 1565-1571, 1991.
doi:10.1088/0031-9155/36/12/002
15. Mitchell, M. D., H. L. Kundel, L. Axel, and P. M. Joseph, "Agarose as a tissue equivalent phantom material for NMR imaging," Magnetic Resonance Imaging, Vol. 4, 263-266, 1986.
doi:10.1016/0730-725X(86)91068-4
16. In, E., H. E. Naguib, and M. Haider, "Fabrication and characterization of polymer gel for MRI phantom with embedded lesion particles," Proceeding of SPIE, Vol. 8348, 2012.
17. Freed, M., J. A. de Zwart, J. T. Loud, R. H. E. Khouli, K. J. Myers, M. H. Greene, J. H. Duyn, and A. Badano, "An anthropomorphic phantom for quantitative evaluation of breast MRI," Medical Physics, Vol. 38, 743-753, 2011.
doi:10.1118/1.3533899
18. Sunaga, T., H. Ikehira, S. Furukawa, M. Tamura, E. Yoshitome, T. Obata, H. Shinkai, S. Tanada, H. Murata, and Y. Sasaki, "Development of a dielectric equivalent gel for better impedance matching for human skin," Bioelectromagnetics, Vol. 24, 214-217, 2003.
doi:10.1002/bem.10080
19. Zivkovic, I., C. Wandrey, and B. Bogicevic, "Alginate beads and epoxy resin composites as candidates for microwave absorbers," Progress In Electromagnetics Research C, Vol. 28, 127-142, 2012.
doi:10.2528/PIERC12021308
20. Zivkovic, I. and A. Murk, "Free-space transmission method for the characterization of dielectric and magnetic materials at microwave frequencies," Microwave Materials Characterization, 73-90, InTech, Rijeka, Croatia, 2012.
21. Leonard, J. B., K. R. Foster, and T. W. Athey, "Thermal properties of tissue equivalent phantom materials," IEEE Transactions on Biomedical Engineering, Vol. 31, 533-536, 1984.
doi:10.1109/TBME.1984.325296
22. Bini, M., A. Ignesti, L. Millanta, R. Olmi, N. Rubino, and R. Vanni, "The polyacrylamide as a phantom material for electromagnetic hyperthermia studies," IEEE Transactions on Biomedical Engineering, Vol. 31, 317-322, 1984.
doi:10.1109/TBME.1984.325271
23. Hartsgrove, G., A. Kraszewski, and A. Surowiec, "Simulated biological materials for electromagnetic radiation absorption studies," Bioelectromagnetics, Vol. 8, 29-36, 1987.
doi:10.1002/bem.2250080105
24. Kanda, M. Y., M. Ballen, S. Salins, C. K. Chou, and Q. Balzano, "Formulation and characterisation of tissue equivalent liquids used for RF densitometry and dosimetry measurements," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 2046-2056, 2004.
doi:10.1109/TMTT.2004.832001
25. Lopresto, V., R. Pinto, R. Lodato, G. A. Lovisolo, and M. Cavagnaro, "Design and realization of tissue-equivalent ielectric simulators for dosimetric studies on microwave antennas for interstitial ablation," Physica Medica, Vol. 28, 245-253, 2012.
doi:10.1016/j.ejmp.2011.09.001
26. Kiley, E. M., V. V. Yakovlev, K. Ishizaki, and S. Vaucher, "Applicability study of classical and contemporary models for effective complex permittivity of metal powders," Journal of Microwave Power and Electromagnetic Energy, Vol. 46, 2012.
27. Sihvola, A., Electromagnetic Mixing Formulas and Applications, IEE Electromagnetic Waves Series, Vol. 47, TJ International, UK, 1999.
doi:10.1049/PBEW047E
28. Merrill, W. M., R. E. Diaz, M. M. Lore, M. C. Squires, and N. G. Alexopoulos, "Effective medium theories for artificial materials composed of multiple sizes of spherical inclusions in a host continuum," IEEE Transactions on Antennas and Propagation, Vol. 47, 142-148, 1999.
doi:10.1109/8.753004
29. Yang, R. B., S. D. Hsu, and C. K. Lin, "Frequency-dependent complex permittivity and permeability of iron-based powders in 2-18 GHz," Journal of Applied Physics, Vol. 105, 2009.
30. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine and Biology, Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003