Vol. 40
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-05-29
Closed-Form Pdf for Multiuser TR-UWB Systems Under Gaussian Noise and Impulsive Interference
By
Progress In Electromagnetics Research C, Vol. 40, 175-186, 2013
Abstract
In most existing transmitted-reference ultra-wideband (TR-UWB) communication systems, receivers use the standard Gaussian approximation (SGA) for multiuser interference (MUI). It is an assumption used in most conventional multiuser systems, where the MUI tends to a Gaussian process by the central limit theorem, and convergence is relatively fast with respect to the number of users. However, for TR-UWB systems which are developed for short-range applications, we have a small number of active users. In this case, significant performance degradation is found in TR-UWB receivers due to the impreciseness of SGA. In this paper, we show that the Middleton class-A model is a more appropriate statistical model for MUI modeling in TR-UWB systems than the often used SGA. A closed-form expression for the probability density function (PDF) of the TR-UWB system under MUI, Gaussian noise and impulsive alpha-stable interference is developed. All these analytical results are confirmed by numerical simulations.
Citation
Djamel Abed, Salah Redadaa, and Smail Tedjini, "Closed-Form Pdf for Multiuser TR-UWB Systems Under Gaussian Noise and Impulsive Interference," Progress In Electromagnetics Research C, Vol. 40, 175-186, 2013.
doi:10.2528/PIERC13032607
References

1. Report and order in the commission's rules regarding ultra-wideband transmission systems Federal Communications Commission, Apr. 2002.

2. Fan, Z. G., L. X. Ran, and J. A. Kong, "Source pulse optimizations for UWB radio systems," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 11, 1535-1550, 2006.
doi:10.1163/156939306779274309

3. Win, , M. Z. and R. A. Scholtz, "On the energy capture of ultrawide bandwidth signals in dense multipath environments," IEEE J. Sel. Areas Commun., Vol. 2, No. 2, 245-247, Sep. 1998.

4. Liu, X., B.-Z. Wang, S. Xiao, and J. Deng, "Performance of impulse radio UWB communications based on time reversal technique," Progress In Electromagnetics Research, Vol. 79, 401-413, 2008.
doi:10.2528/PIER07102205

5. Xiao, S. Q., J. Chen, B.-Z. Wang, and X. F. Liu, "A numerical study on time-reversal electromagnetic wave for indoor ultrawideband signal transmission," Progress In Electromagnetics Research, Vol. 77, 329-342, 2007.
doi:10.2528/PIER07082501

6. Hoctor, R. T. and H. W. Tomlinson, "An overview of delay-hopped transmitted-reference RF communications,", Technique Information Series: G.E. Research and Development Center, Jan. 2002.

7. Xu, Z. and B. M. Sadler, "Multiuser transmitted reference ultra-wideband communication systems," IEEE J. Sel. Areas Commun., Vol. 24, No. 4, 766-772, Apr. 2006.
doi:10.1109/JSAC.2005.863826

8. Jia, T. and D. I. Kim, "Multiple access performance of balanced UWB transmitted-reference systems in multipath," IEEE Trans. Wireless Commun., Vol. 7, No. 3, 1084-1094, Mar. 2008.
doi:10.1109/TWC.2008.060864

9. D'Amico, A. and U. Mengali, "Code-multiplexed transmitted-reference UWB systems in a multi-user environment," IEEE Trans. Commun., Vol. 58, No. 3, 966-974, Mar. 2010.
doi:10.1109/TCOMM.2010.03.080258

10. Forouzan, A. R., M. N. Kenari, and J. A. Salehi, "Performance analysis of time-hopping spread-spectrum multiple-access systems: Uncoded and coded schemes," IEEE Trans. Wireless Commun., Vol. 1, No. 4, 671-681, Oct. 2002.
doi:10.1109/TWC.2002.804186

11. Salehi, J. A. and C. A. Brackett, "Code division multiple-access techniques in optical fiber networks. Part II: Systems performance analysis," IEEE Trans. Commun., Vol. 37, No. 8, 834-841, Aug. 1989.
doi:10.1109/26.31182

12. NIST/SEMATECH "6.3.3.1. counts control charts," NIST/SEMATECH E-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/.

13. Middleton, D., "Statistical models of electromagnetic interference," IEEE Trans. Electromagn. Compat., Vol. 19, No. 3, 106-127, Aug. 1977.
doi:10.1109/TEMC.1977.303527

14. Li, X. T., J. Sun, L. W. Jin, and M. Liu, "Bi-parameter CGM model for approximation of α-stable PDF," Electronics Letters, Vol. 44, No. 18, 1096-1097, Aug. 2008.
doi:10.1049/el:20080955

15. Di Renzo, M., L. A. Annoni, F. Graziosi, and F. Santucci, "A novel class of algorithms for timing acquisition of differential transmitted-reference UWB receivers: Architecture, performance analysis and system design," IEEE Trans. Wireless Commun., Vol. 7, No. 6, 2368-2387, Jun. 2008.
doi:10.1109/TWC.2008.070097

16. Cover, T. M. and J. A. Thomas, Elements of Information Theory, Wiley, NY, 1991.
doi:10.1002/0471200611

17. Middleton, D., "Non-Gaussian noise models in signal processing for telecommunications: New methods and results for class A and class B noise models," IEEE Trans. on Information Theory, Vol. 45, No. 4, 1129-1149, May 1999.
doi:10.1109/18.761256