Vol. 40
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-05-29
A Derived Physically Expressive Circuit Model for Electrically Small Radiating Structures
By
Progress In Electromagnetics Research C, Vol. 40, 159-174, 2013
Abstract
Recently, a new radiation model for the partial element equivalent circuit (PEEC) technique has been proposed. This model makes use of the concept of generalized complex inductance to account for the radiation effect and preserve the (quasi-)static condition for the capacitance. Therefore, PEEC models with the radiation effect included consists of real-valued capacitors but complex-valued inductors. In this paper, a method for deriving a concise and physically intuitive equivalent circuit from such a radiating PEEC model is presented. The method is based on the Y-to-Δ transformation to eliminate all "unimportant" internal circuit nodes and results in an equivalent circuit with only a few nodes left. The equivalent circuit for a short electric dipole is first derived analytically to offer a simple explanation to the basic principles. The proposed method is then applied to several practical and electrically small antennas for more detailed demonstrations. Numerical results obtained from these examples suggest that a physically intuitive circuit model can potentially be derived for arbitrary radiating multi-conductor structures, showing the method is useful for analysis and design of modern integrated and electrically small antennas.
Citation
Lap-Kun Yeung, and Ke-Li Wu, "A Derived Physically Expressive Circuit Model for Electrically Small Radiating Structures," Progress In Electromagnetics Research C, Vol. 40, 159-174, 2013.
doi:10.2528/PIERC13031503
References

1. Ruehli, A. E., "Equivalent circuit models for three dimensional multiconductor systems," IEEE Trans. Microwave Theory Tech., Vol. 22, 216-221, March 1974.
doi:10.1109/TMTT.1974.1128204

2. Heeb, H. H. and A. E. Ruehli, "Three-dimensional interconnect analysis using partial element equivalent circuits," IEEE Trans. Circuits and Systems, Vol. 39, 974-982, November 1992.

3. Kochetov, S. V., M. Leone, and G. Wollenberg, "PEEC formulation based on dyadic Green's functions for layered media in the time and frequency domains," IEEE Trans. Electromagnetic Compatibility, Vol. 50, 953-965, November 2008.
doi:10.1109/TEMC.2008.2005837

4. Jayabalan, J., B.-L. Ooi, M.-S. Leong, and M. K. Iyer, "Novel circuit model for three-dimensional geometries with multilayer dielectrics," IEEE Trans. Microwave Theory Tech., Vol. 54, 1331-1339, June 2006.
doi:10.1109/TMTT.2006.871228

5. Zhang, X. and Z. Feng, "A new retarded PEEC model for antenna," IEEE 2008 Asia-Pacific Microwave Conf., Macau, 2008.

6. Sundberg, S. and J. Ekman, "PEEC modeling of antenna characteristics," Proc. IEEE Int. Symp. EMC, 580-585, Portland, 2006.

7. Yeung, L. K. and K.-L. Wu, "Generalized partial element Generalized partial element," IEEE Trans. Microwave Theory Tech., Vol. 59, 2377-2384, October 2011.
doi:10.1109/TMTT.2011.2163803

8. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley and Sons, New Jersey, 2005.

9. Antonini, G., D. Deschrijver, and T. Dhaene, "Broadband rational macromodeling based on the adaptive frequency sampling algorithm and the partial element equivalent circuit method," IEEE Trans. Electromagnetic Compatibility, Vol. 50, 128-137, February 2008.
doi:10.1109/TEMC.2007.913225

10. Song, Z., D. Su, F. Duval, and A. Louis, "Model order reduction for PEEC modeling based on moment matching," Progress In Electromagnetics Research, Vol. 114, 285-299, 2011.

11. Wang, J. and K.-L. Wu, "A derived physically expressive circuit model for multilayer RF embedded passives," IEEE Trans. Microwave Theory Tech., Vol. 54, 1961-1968, May 2006.
doi:10.1109/TMTT.2006.873621