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Abstract—Recently, a new radiation model for the partial element
equivalent circuit (PEEC) technique has been proposed. This model
makes use of the concept of generalized complex inductance to account
for the radiation effect and preserve the (quasi-)static condition
for the capacitance. Therefore, PEEC models with the radiation
effect included consists of real-valued capacitors but complex-valued
inductors. In this paper, a method for deriving a concise and
physically intuitive equivalent circuit from such a radiating PEEC
model is presented. The method is based on the Y -to-∆ transformation
to eliminate all “unimportant” internal circuit nodes and results in
an equivalent circuit with only a few nodes left. The equivalent
circuit for a short electric dipole is first derived analytically to
offer a simple explanation to the basic principles. The proposed
method is then applied to several practical and electrically small
antennas for more detailed demonstrations. Numerical results obtained
from these examples suggest that a physically intuitive circuit model
can potentially be derived for arbitrary radiating multi-conductor
structures, showing the method is useful for analysis and design of
modern integrated and electrically small antennas.

1. INTRODUCTION

The number of radio systems in handheld wireless devices has been
growing rapidly during the last several years from typically two systems
to almost ten, including FM, GSM, 3G, WLAN, Bluetooth, and etc..
On the other hand, the major trend of these devices today is towards
smaller size and longer battery life. This, indeed, posts a serious
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challenge to antenna designers because there is a fundamental limit
on how small an antenna can be but without scarifying too much of its
performance. For such modern wireless devices, instead of traditional
monopole-like configurations, small-size integrated antennas of better
efficiency and more complex in shape are often required. These
antennas usually operate at multiple frequency bands and have strict
performance requirements, and thus need more sophisticated tools to
design.

Nowadays, a variety of numerical techniques exists for modeling
electromagnetic (EM) phenomena, such as method of moments (MoM),
finite-difference time-domain (FDTD) method, and finite-element
method (FEM). Among all existing techniques, the partial element
equivalent circuit (PEEC) technique [1] has been widely used for
modeling of different electromagnetic-related issues [2–4], including
electro-magnetic compatibility (EMC), electromagnetic interference
(EMI), as well as signal integrity (SI) for high-speed electronic circuits.
The major reason for its attractiveness is that it can convert a physical
layout to a mesh-dependent lumped-element circuit network, which
can easily be solved by conventional circuit solvers. Over a few
decades of development, the PEEC technique has evolved to a complete
numerical algorithm in solving more and more complex problems and
found itself many new applications. In fact, the combined circuit and
electromagnetic approach makes this technique also a suitable tool for
antenna design and verification. As it can offer a direct integration to
other circuit models, a complete antenna system can be analyzed in a
straightforward manner.

Nevertheless, as far as we know, there are only few PEEC-
based models that can handle the radiation effect. All existing ones
involve the use of time-retarded control sources [5, 6], which may not
be physically intuitive. Recently, a radiation model for the PEEC
technique has been proposed [7]. This model makes use of the concept
of generalized complex inductance to account for the radiation effect
and the resulting equivalent circuit can be used as a starting point to
extract all essential information on the radiation characteristics of the
structure being investigated. In this paper, a method for deriving a
concise and physically intuitive equivalent circuit from such a radiating
PEEC model is proposed. The concise circuit obtained from this
method should provide significant physical insights to the structure
being modeled. A simple example, namely, a short thin metal strip
(electric dipole) is first used to explain the basic concept. Then, several
practical radiating structures are considered to show the potential of
this method for analysis and design of integrated antennas.
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2. THEORY

2.1. Radiation Model for PEEC

A new radiation model for PEEC has been proposed recently. From
the derivation given in [7] for the free-space case, the coefficient of
potential between two capacitive meshes i and n is defined as

ppi,n =
1

aian

∫∫
e−jkR

4πε0R
ds′ndsi, (1)

where ai and an are the areas of the two corresponding meshes.
Under the (quasi-)static assumption, where kR ¿ 1, one may assume
e−jkR ≈ 1 and invert the coefficient of potential matrix to obtain
the short-circuited capacitances ci,n’s. In order to preserve this
capacitance definition in a full-wave analysis, the frequency dependent
portion of (1) should be extracted out and incorporated only into the
inductance matrix. Mathematically, this is done by first separating the
integral in (1) into two parts as

ppi,n = pp0
i,n + ppf

i,n =
1

aian

∫∫
1

4πε0R
ds′ndsi

+
1

aian

∫∫
e−jkR − 1

4πε0R
ds′ndsi. (2)

The first integral in (2) is the conventional (quasi-)static coefficient
of potential from which the short-circuited capacitance matrix can be
obtained. On the other hand, the frequency dependent second integral
is included only in the inductance matrix calculation, in which, the
generalized mutual inductance between two inductive meshes l and m
is defined in [7] as

Ll,m = L̄l,m +
ppf

l+,n1

ω2
−

ppf
l−,n1

ω2
−

ppf
l+,n2

ω2
+

ppf
l−,n2

ω2
, (3)

where n1, n2 and l+, l− are the capacitive meshes connecting to the
two ends of inductive mesh m and l respectively. The original self-
(l = m) or mutual inductance term of

L̄l,m =
1

wlwm

∫∫
µ0e

−jkR

4πR
ds′mdsl, (4)

where wl and wm are the widths of the corresponding meshes, is
generalized by “absorbing” the second integral in (2). The significance
of introducing such a generalized inductance is that it can correctly
account for the radiation effect and, at the same time, preserve the
(quasi-) static condition for the capacitance matrix.
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Let’s consider a simple short thin metal strip of length l and width
w as shown in Fig. 1. The dipole is divided into one inductive (solid)
and two capacitive (dotted) meshes, resulting in an equivalent circuit as
shown also in Fig. 1. It can be derived that the generalized inductance
in this case is given by

L =
µ0

4πw2

∫∫
1
R

ds′ds− µ0l

4π
− j

(
µ0kl2

6π

)
. (5)

The real part of jωL can be interpreted as a frequency dependent
resistance with the value of

R = 80π2

(
l

λ

)2

, (6)

which is exactly equal to the well-known radiation resistance of a short
dipole given in the classical antenna theory [8]. The imaginary part
of generalized inductance in fact represents the radiation loss of the
strip. In order to have a better picture of the radiation model, a
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Figure 1. Short metal strip and its two-mesh (capacitive) PEEC
model.
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Figure 2. Center-fed thin-strip dipole and its PEEC model.
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full-fledged antenna example is shown in Fig. 2. Here, a thin-strip
center-fed dipole and its eight-mesh (capacitive) PEEC model with
complex-valued inductors are depicted. Notice that not all mutual
components are shown in the figure for clarity. This example clearly
shows that the PEEC model, in general, can be quite complicated.

2.2. Model Order Reduction

For a typical PEEC analysis, the resulting equivalent circuit is mesh
dependent and usually contains a large number of elements. Therefore,
in general, it is difficult to obtain any physical insights by directly
examining the circuit itself. This fact is well illustrated in the center-
fed dipole example given above. In order to obtain a more concise and
physically intuitive circuit model, the model order reduction (MOR)
technique [9, 10] can be applied. In this work, the one introduced
in [11] is used. This technique is based on the principle of Y -to-∆
transformation to eliminate all “unimportant” internal circuit nodes.
The reduced circuit thus contains only a few nodes and is physically
intuitive. Fig. 3 demonstrates the node elimination principle. Here,
node 0 is being eliminated and new admittances between each pair of
remaining nodes can be calculated by

yij =
yiyj

yt
with yt = y1 + y2 + y3 + y4, (7)

for i 6= j and i, j = 1, . . . , 4. Specifically, as the PEEC model has its
branches consist of either a single capacitor or a parallel LC-tank, the
i-th branch admittance takes the form of

yi = jωCi +
1

jωLi
. (8)
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Figure 3. Node elimination principle.
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Substituting (8) into (7), the new admittance between node i and node
j can be expressed as

yij = jωCij +
1

jωLij
, (9)

with

Cij =

C̄ij︷ ︸︸ ︷
CiCj

Ct
+ αLt

1−ω2LtCt
and Lij = LiLj

Lt
,

(10)

where a = Ci/Lj + Cj/Li − C̄ij/Lt − Ct/Lij, and Lt and Ct are
the total inductance and capacitance connecting to the node that is
being deleted. Two important points can be observed here. Firstly,
the capacitance Cij is mixed with the inductance Lt after the Y -to-
∆ transformation. In other words, the capacitive components of the
simplified circuit are generally complex in value, which implies that
there is radiation loss (or gain) associated with each of them. For
example, the new capacitance Cij in (10) is a function of Lt and α.
As these two terms are complex in value, Cij is also complex in value
with its imaginary part equivalent to a conductance (after multiplying
to jω). Secondly, the term ω2LtCt can be used as a criterion to
determine how concise the final simplified circuit model should be. For
an internal node that has the condition of ω2LtCt ¿ 1, its coupling to
all other connecting nodes is small. Thus, this node can be considered
“unimportant” and can be eliminated. In practice, a cutoff value δ
can be preset such that all the internal nodes satisfying the condition
of ω2LtCt < δ should be removed. And hence, the complexity of the
resulting simplified circuit depends on how small this value is.

To illustrate this MOR concept, let’s consider again the short
metal strip example discussed earlier under the three-mesh (capacitive)
configuration. As shown in Fig. 4, the PEEC model consists of
two (complex) inductors and six capacitors. Using (3) and (4), the
expressions for the two generalized self-inductances are obtained as

La =
µ0

4πw2

∫∫
1
R

ds′ds− µ0la
4π

− j

(
µ0kl2a
6π

)
, (11a)

Lb =
µ0

4πw2

∫∫
1
R

ds′ds− µ0lb
4π

− j

(
µ0kl2b
6π

)
, (11b)

where la + lb = l and that for the mutual inductance is

M =
µ0

4πw2

∫∫
1
R

ds′ds− j

(
µ0klalb

6π

)
. (12)
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Figure 4. Three-mesh (capacitive) PEEC model of a short metal
strip.

The equivalent circuit shown in Fig. 4 contains one internal node,
namely, node 0. To simplify this circuit, this internal node can
be eliminated. The first step is to convert the pair of mutually
coupled inductors into a set of directly connected inductors as depicted
in Fig. 5. Then, node 0 is eliminated by applying the Y -to-∆
transformation, resulting in a π-network consisting of admittances Y1,
Y2, and Y12. Using (9) and (10), it can be shown that

Y12 =
Lt

jωL1L2
+ jω

C1C2

Ct

+
jω

1− ω2LtCt

(
C1k2 + C2k1 − C1C2

Ct
− Ctk1k2

)
, (13)

with k1 = Lt/L1 and k2 = Lt/L2. The overall inductance across node 1
and node 2 is then equal to L12 in parallel with the inductive part of
Y12, which is (

1
L12

+
Lt

L1L2

)−1

= La + Lb + 2M. (14)

The real part of jω(La + Lb + 2M), which represents the radiation
loss, is once again equal to (6) with the use of (11) and (12). This
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Figure 5. Simplification of the PEEC model.
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result suggests that the once mesh-dependent circuit (Fig. 4) can be
simplified to a more concise circuit (Fig. 1), which contains all the
essences of the metal strip being modeled.

Notice that, the criterion of ω2LtCt < δ is assumed valid for
node 0 in the above simplification exercise. Therefore, the three-mesh
PEEC model is reduced to its simplest form, which contains only two
external nodes. Obviously, if δ is set to a very small value such that
the condition cannot be satisfied, node 0 will not be removed and
the PEEC model will remain the same. In fact, this illustrates how
the parameter δ can be used to determine the conciseness of the final
circuit.

3. NUMERICALLY RESULTS

3.1. Small Thin-strip Dipoles

An antenna is usually considered to be electrically small if it satisfies
the inequality of ka < 0.5, where k is the free-space propagation
constant and a is the radius of the smallest sphere that can completely

a
 

(a)

(c)

(b)

(d)

Figure 6. Various small antennas including (a) straight and
(c) meandered dipoles, (b) square and (d) meandered loops.
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encloses the antenna [8]. With this definition, two electrically small
thin-strip dipoles, namely, a straight dipole and a meandered dipole
(Fig. 6) are investigated here with ka = 0.5 at 4 GHz. Assuming there
is no conductor loss, it is expected that the meandered dipole should
have a smaller radiation quality (Q) factor when comparing to the
straight one. However, this fact cannot be seen by directly looking
at their PEEC models, which contain a large number of elements.
Specifically, the model for the straight dipole contains 136 capacitors
and 14 mutually coupled inductors (corresponding to 16 capacitive
meshes) whereas the one for the meandered dipole contains 1953
capacitors and 60 mutually coupled inductors (corresponding to 62
capacitive meshes). On the other hand, their concise circuits derived
by using the MOR technique discussed above can readily provide
information on the Q factor. In both cases, the original PEEC models
are simplified (with a large δ) to the (a) circuit shown in Fig. 7 with
the corresponding component values listed in Table 1 and Table 2,
respectively.

Table 1. Component values for the straight dipole.

Freq.

(GHz)
Ca (F) Cb (F)

1 1.45× 10−14 − j3.62× 10−18 7.31× 10−14 − j2.30× 10−21

2 1.48× 10−14 − j3.01× 10−17 7.37× 10−14 − j7.51× 10−20

3 1.55× 10−14 − j1.08× 10−16 7.47× 10−14 − j5.96× 10−19

4 1.65× 10−14 – j2.81× 10−16 7.62× 10−14 − j2.67× 10−18

Ca 
Cb 

Cb  

Ca

Cb

Cb  

L 

Dominant

(a) (b)

Figure 7. Electrically small antenna circuit models: (a) electric type
and (b) magnetic type.

By looking at these concise circuits, it is clear that the two
antennas are both electric-type within the operating frequency band of
interest (< 4GHz) because both of them can be modeled by a circuit
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Table 2. Component values for the meandered dipole.

Freq.

(GHz)
Ca (F) Cb (F)

1 4.50× 10−14 − j1.95× 10−17 1.37× 10−13 − j7.79× 10−21

2 5.09× 10−14 − j1.91× 10−16 1.44× 10−13 − j2.97× 10−19

3 6.53× 10−14 − j9.76× 10−16 1.59× 10−13 − j3.12× 10−18

4 1.08× 10−13 − j5.26× 10−15 1.92× 10−13 − j2.37× 10−17

dominated by only capacitors. Another interesting fact is that these
complex-valued capacitors have their imaginary values increase with
the operating frequency. In essence, the imaginary part of such a
capacitor represents its loss from radiation. When looking into the
excitation port, the (left) circuit in Fig. 7 can be further simplified to
contain just a single capacitor of value C = Ca+Cb/2. Its quality factor
is approximately the radiation Q factor of the antenna. Fig. 8 shows
the excitation port admittances and approximated Q factors (triangle
markers) for the two antennas at different operating frequencies. It
can be seen from the figure that the radiation conductance of the
meandered dipole is generally larger and increases rapidly when ka
approaching 0.5. To verify the accuracy of these derived concise
circuit models, results (solid lines) obtained from a commercial full-
wave electromagnetic solver are also shown and they agree well with
each other.

3.2. Small Thin-strip Dipoles

An electrically small loop is a magnetic-type antenna because its stored
reactive energy is mainly inductive. In this sense, the derived concise
(right) circuit given in Fig. 7 should be dominated by the inductor.
An electrically small thin-strip square loop and a meandered loop
are investigated with again ka = 0.5 at 4GHz. Using the MOR
technique discussed above, the component values for the two loops
are derived and listed in Table 3 and Table 4, respectively. Notice
that, from the perspective of the excitation port, the three capacitors
can be combined into a single one and the overall capacitance is again
given by the formula C = Ca + Cb/2. The calculated admittances
and approximated radiation Q factors are plotted also in Fig. 8. The
results from these concise circuit models agree well with the full-
wave solutions. Comparing with their corresponding PEEC models, a
significant simplification has been achieved for both cases. Specifically,
the PEEC model for the square loop contains 276 capacitors and 22
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Figure 8. Excitation port admittances and approximated radiation Q
factors for various electrically small antennas. Solid curves are results
from a commercial full-wave MoM solver and triangular markers are
results from the proposal method.

Table 3. Component values for the square loop.

Freq.

(GHz)
C = Ca + Cb/2 (F) L (F)

1 4.48× 10−14 − j3.39× 10−17 2.32× 10−08 − j3.42× 10−12

2 4.54× 10−14 − j9.74× 10−17 2.33× 10−08 − j2.12× 10−11

3 4.66× 10−14 − j2.31× 10−16 2.34× 10−08 − j6.72× 10−11

4 4.85× 10−14 − j5.01× 10−16 2.36× 10−08 − j1.54× 10−10

mutually coupled inductors (corresponding to 23 capacitive meshes)
whereas the one for the meandered loop contains 1128 capacitors and
46 mutually coupled inductors (corresponding to 47 capacitive meshes).
It is interesting to see that, unlike the dipole case, there is no significant
improvement on the Q factor by meandering of the loop.

3.3. Radiation Efficiency

When substrate loss and conductor loss are included in the PEEC
analysis, the radiation efficiency of these antennas can also be
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quickly calculated from their associated concise circuit models.
Generally speaking, such losses can be modeled by having finite-
valued conductivity (conductor loss) and complex-valued permittivity
(substrate loss), which thus lead to an extra resistance term to
the inductance and an extra conductance term to the capacitance.

Table 4. Component values for the meandered loop.

Freq.

(GHz)
C = Ca + Cb/2 (F) L (F)

1 5.52× 10−14 − j3.36× 10−17 2.65× 10−08 − j3.06× 10−12

2 5.65× 10−14 − j1.05× 10−16 2.66× 10−08 − j1.83× 10−11

3 5.89× 10−14 − j2.73× 10−16 2.68× 10−08 − j5.75× 10−11

4 6.28× 10−14 − j6.61× 10−16 2.69× 10−08 − j1.32× 10−10

Table 5. Component values for the lossy straight dipole.

Freq.

(GHz)
Ca (F) Cb (F)

1 1.45× 10−14 − j4.69× 10−18 7.31× 10−14 − j3.78× 10−18

2 1.48× 10−14 − j3.24× 10−17 7.37× 10−14 − j7.82× 10−18

3 1.55× 10−14 − j1.12× 10−16 7.47× 10−14 − j1.27× 10−17

4 1.65× 10−14 − j2.87× 10−16 7.62× 10−14 − j1.97× 10−17

Table 6. Component values for the lossy meandered dipole.

Freq.

(GHz)
Ca (F) Cb (F)

1 4.50× 10−14 − j5.82× 10−17 1.37× 10−13 − j6.40× 10−17

2 5.09× 10−14 − j2.94× 10−16 1.44× 10−13 − j1.51× 10−16

3 6.53× 10−14 − j1.24× 10−15 1.59× 10−13 − j3.11× 10−16

4 1.08× 10−13 − j6.27× 10−15 1.92× 10−13 − j7.32× 10−16

Table 7. Component values for the lossy square loop.

Freq.

(GHz)
C = Ca + Cb/2 (F) L (H)

1 4.48× 10−14 − j2.94× 10−17 2.32× 10−08 − j3.05× 10−10

2 4.54× 10−14 − j1.00× 10−16 2.33× 10−08 − j1.72× 10−10

3 4.66× 10−14 − j2.39× 10−16 2.34× 10−08 − j1.68× 10−10

4 4.85× 10−14 − j5.15× 10−16 2.36× 10−08 − j2.30× 10−10
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Table 8. Component values for the lossy meandered loop.

Freq.

(GHz)
C = Ca + Cb/2 (F) L (H)

1 5.52× 10−14 − j3.50× 10−17 2.65× 10−08 − j4.63× 10−10

2 5.65× 10−14 − j1.18× 10−16 2.66× 10−08 − j2.49× 10−10

3 5.89× 10−14 − j2.98× 10−16 2.68× 10−08 − j2.11× 10−10

4 6.28× 10−14 − j7.05× 10−16 2.69× 10−08 − j2.47× 10−10

Mathematically, a lossy inductor and a lossy capacitor can be defined,
respectively, as

R + jωL = jω

(
L− j

R

ω

)
= jωLlossy, (15a)

G + jωC = jω

(
C − j

G

ω

)
= jωClossy. (15b)

Since all the examples considered above have no substrate loss, only
the inductive components of their PEEC models should be modified
by adding the conductor loss of

R = κ · l

σA
, (16)

where σ, l, and A are conductivity, length and cross-section area of
the inductive mesh respectively. And κ (≤ 1) is used to approximately
account for the skin effect. In this case, the inductive components are
now taking into account for both radiation loss and conductor loss. By
setting σ to 5.8×107 S/m and mesh thickness to 1µm, new component
values of the concise models for the four antennas are obtained as shown
in Tables 5 to 8. Comparing these values to those listed in Tables 1 to
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Figure 9. Estimated efficiencies of various electrically small antennas.
Solid curves are results from a commercial full-wave MoM solver and
triangular markers are results from the proposal method.
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4, the radiation efficiency for these antennas can be calculated and are
shown in Fig. 9. It is interesting to see that even though the meandered
dipole has a larger radiating resistance than the straight one, it indeed
is less efficient.

4. DISCUSSION

In the above examples, the parameter δ has been set to a large value
such that all PEEC models were simplified to containing only the port
nodes. These simplified circuits are indeed concise and reveal the most
important features of the radiating structures being modeled, namely
the radiation loss and net reactive energy. However, using a large
value of δ may produce an “oversimplified” circuit especially when ka is
closer to 0.5. Notice that an “oversimplified” circuit is still numerically
accurate in terms of the excitation port responses since there is no
approximation made during the reduction process. However, some
internal features of the radiating structure being modeled are hidden.
Fig. 10 shows the derived concise circuits for the meandered dipole and
square loop at 4 GHz with δ being set to 0.15. Comparing with those
shown in Fig. 7, the one for the dipole contains two extra (internal)

Figure 10. Concise equivalent circuits for the meandered dipole and
square loop with δ = 0.15.
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Table 9. Component values.

Meandered Dipole Square Loop

Ca 6.88× 10−14 − j3.62× 10−17 F 7.66× 10−14 − j1.32× 10−17 F

Cb 7.39× 10−14 + j2.49× 10−17 F 1.46× 10−13 − j5.76× 10−17 F

Cc 1.20× 10−14 − j2.07× 10−16 F 1.91× 10−14 − j5.39× 10−16 F

Cd 1.85× 10−14 − j2.81× 10−16 F -

Ce 8.34× 10−15 + j1.18× 10−16 F -

L 8.37× 10−09 − j1.03× 10−10 H 1.05× 10−08 − j5.22× 10−10 H

M 3.10× 10−10 − j1.06× 10−10 H – 7.04× 10−11 + j4.68× 10−10 H

nodes whereas the one for the loop contains one extra (internal)
nodes. These two circuits are definitely able to reveal the key internal
features of the antennas. For instance, the two radiating arms and
their associated inductances of each antenna are clearly represented
by the two inductors in each circuit. Moreover, their self- and mutual
capacitive couplings are represented by various capacitors as shown.
Component values for these two cases are listed in Table 9.

5. CONCLUSION

An automatic MOR technique for generating a physical intuitive circuit
model for electrically small radiating structures has been proposed in
this paper. It is found out that the model is concise and contains
all the key features of the structure being modeled. Specifically,
the proposed algorithm can generate a very concise circuit model,
which contains only the port nodes, so that the radiation loss can be
represented by a single resistor. With this specific model, the radiation
Q factor and efficiency of a radiating structure can be easily obtained.
In addition, the conciseness of the reduced model can be controlled
to reveal different levels of internal features for a given radiating
structure. This capability is not available from typical commercial full-
wave solvers. The MOR technique is particular useful for the design
and analysis of integrated and electrically small antennas for modern
wireless communication devices.
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