Vol. 35
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-12-25
A Novel Interacting Multiple Model Particle Filter for Maneuvering Target Tracking in Clutter
By
Progress In Electromagnetics Research C, Vol. 35, 177-191, 2013
Abstract
In this paper, a novel interactive multiple model particle filter (IMMPF) is developed after a Bayesian estimator for maneuvering target tracking in clutter is derived theoretically. In this new algorithm, base state estimation and modal state estimation are completely separated to control the number of particles in each maneuvering mode. Only continuous-valued particles are used to numerically implement the procedure of Bayesian base state estimation, whereas modal state is estimated analytically without dependence on the number of particles. Density mixing is performed by aggregation of the total particles and mixing associated weights. To prevent the exponentially growing number of particles with the time, a resampling step is included following the interaction step. Through MC simulations, the new IMMPF has been tested and shown to provide reliable performance improvements with different sample sizes and under various clutter conditions.
Citation
Jian-Tao Wang, Bo Fan, Yan-Peng Li, and Zhaowen Zhuang, "A Novel Interacting Multiple Model Particle Filter for Maneuvering Target Tracking in Clutter," Progress In Electromagnetics Research C, Vol. 35, 177-191, 2013.
doi:10.2528/PIERC12110109
References

1. Blair, W. D., G. A. Watson, T. Kirubarajan, and Y. Bar-Shalom, "Benchmark for radar allocation and tracking in ECM," IEEE Transactions on Aerospace and Electronic Systems, Vol. 34, No. 4, 1097-1114, 1998.
doi:10.1109/7.722694

2. Morelande, M. R. and S. Challa, "Manoeuvring target tracking in clutter using particle filters," IEEE Transactions on Aerospace and Electronic Systems, Vol. 41, No. 1, 252-270, 2005.
doi:10.1109/TAES.2005.1413760

3. Wang, J. T., H. Q. Wang, Y. L. Qin, and Z. W. Zhuang, "Efficient adaptive detection threshold optimization for tracking maneuvering targets in clutter," Progress In Electromagnetics Research B, Vol. 41, 357-375, 2012.

4. Wang, X., J. F. Chen, Z. G. Shi, and K. S. Chen, "Fuzzy-control-based particle filter for maneuvering target tracking," Progress In Electromagnetics Research, Vol. 118, 1-15, 2011.
doi:10.2528/PIER11051907

5. Wang, Q., J. Li, M. Zhang, and C. Yang, "H-infinity filter based particle filter for maneuvering target tracking," Progress In Electromagnetics Research B, Vol. 30, 103-116, 2011.

6. Bar-Shalom, Y., X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation, John Wiley & Sons, Inc., 2001.
doi:10.1002/0471221279

7. McGinnity, S. and G. W. Irwin, "Multiple model bootstrap filter for maneuvering target tracking," IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, No. 3, 1006-1012, 2000.
doi:10.1109/7.869522

8. Boers, Y. and J. N. Driessen, "Hybrid state estimation: A target tracking application," Automatica, Vol. 38, No. 12, 2153-2158, 2002.
doi:10.1016/S0005-1098(02)00184-X

9. Morelande, M. R. and S. Challa, "Manoeuvring target tracking in clutter using particle filters," IEEE Transactions on Aerospace and Electronic Systems, Vol. 41, No. 1, 252-270, 2005.
doi:10.1109/TAES.2005.1413760

10. Boers, Y. and J. N. Driessen, "Interacting multiple model particle filter," IEE Proceedings | Radar, Sonar and Navigation, Vol. 150, No. 5, 344-349, 2003.
doi:10.1109/TAES.2005.1541443

11. Bar-Shalom, Y., S. Challa, and H. A. P. Blom, "IMM estimator versus optimal estimator for hybrid systems," IEEE Transactions on Aerospace and Electronic Systems, Vol. 41, No. 3, 986-991, 2005.
doi:10.1049/ip-rsn:20045075

12. Driessen, H. and Y. Boers, "Efficient particle filter for jump Markov nonlinear systems," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 152, No. 5, 323-326, 2005.
doi:10.1109/TAES.2007.357154

13. Blom, H. A. P. and E. A. Bloem, "Exact Bayesian and particle filtering of stochastic hybrid systems," IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 1, 55-70, 2007.
doi:10.1109/MCS.2009.934469

14. Bar-Shalom, Y., F. Daum, and J. Huang, "The probabilistic data association filter," IEEE Control Systems Magazine, Vol. 29, No. 6, 82-100, 2009.

15. Bar-Shalom, Y. and T. E. Fortmann, Tracking and Data Association, Academic Press, 1988.

16. Kitagawa, G., "Monte Carlo filter and smoother for non-Gaussian nonlinear state space models," Journal of Computational and Graphical Statistics, Vol. 5, No. 1, 1-25, 1996.
doi:10.1109/TAES.2006.1642559

17. Zhang, X., P. Willett, and Y. Bar-Shalom, "Uniform versus nonuniform sampling when tracking in clutter," IEEE Transactions on Aerospace and Electronic Systems, Vol. 42, No. 2, 388-400, 2006.
doi: --- Piped Query must contain either 9 (for journals) or 11 (for books/conference proceedings) pipes.