Vol. 31
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-07-18
A Miniature Real-Time Re-Configurable Radar Waveform Synthesizer for UAV Based Radar
By
Progress In Electromagnetics Research C, Vol. 31, 169-183, 2012
Abstract
Radar waveform synthesizer is a key component in radar system as it determines the best achievable resolution. A popular approach in radar waveform synthesis is the Direct Digital Synthesis approach where the signal is first generated in digital domain and converted into analog signal using a High Speed Digital-to-Analog Converter (HS-DAC). In this paper, a miniature and low cost radar waveform synthesizer is proposed. The synthesizer is targeted for Unmanned Aerial Vehicle (UAV) based radar system applications that require miniaturized equipment due to limited space in aircraft's fuselage. The signal synthesizer has been developed using Altera DE3 development board (Stratix III FPGA) and a custom made dual-channel 420 MSPS HS-DAC board. The proposed system is capable of generating various types of radar waveforms: a) Linear Frequency Modulated (LFM) or chirp pulse, b) Frequency Modulated Continuous Wave (FMCW), and c) Calibration Tone (Cal-Tone), for use in different types of radar applications. The distinguishing feature of the proposed synthesizer is its capability in reconfiguring the signal properties in real-time. The performance of the synthesizer has been benchmarked with commercially available radar waveform signal synthesizer and comparable performance has been observed.
Citation
Chua Ming Yam, Huey Shen Boey, Chot Hun Lim, Voon Koo, Heng Siong Lim, Yee Kit Chan, and Tien Sze Lim, "A Miniature Real-Time Re-Configurable Radar Waveform Synthesizer for UAV Based Radar," Progress In Electromagnetics Research C, Vol. 31, 169-183, 2012.
doi:10.2528/PIERC12060801
References

1. Skolnik, M. I., Radar Handbook, McGraw-Hill, 1970.

2. Drinkwater, M. K., R. Kwok, and E. Rignot, "Synthetic aperture radar polarimetry of sea ice," Proceeding of the 1990 International Geoscience and Remote Sensing Symposium, Vol. 2, 1525-1528, 1990.
doi:10.1109/IGARSS.1990.688793

3. Lynne, G. L. and G. R. Taylor, "Geological assessment of SIR-B imagery of the Amadeus Basin," IEEE Trans. on Geosc. and Remote Sensing, Vol. 24, No. 4, 575-581, 1986.
doi:10.1109/TGRS.1986.289673

4. Hovland, H. A., J. A. Johannessen, and G. Digranes, "Slick detection in SAR images," Proceeding of the 1994 International Geoscience and Remote Sensing Symposium, 2038-2040, 1994.
doi:10.1109/IGARSS.1994.399647

5. Walker, B., G. Sander, M. Thompson, B. Burns, R. Fellerhoff, and D. Dubbert, "A high-resolution, four-band SAR testbed with real-time image formation ," Proceeding of the 1986 International Geoscience and Remote Sensing Symposium, 1881-1885, 1996.

6. Chan, Y. K. and V. C. Koo, "An introduction to synthetic aperture radar (SAR)," Progress In Electromagnetics Research B, Vol. 2, 27-60, 2008.
doi:10.2528/PIERB07110101

7. Koo, V. C., Y. K. Chan, V. Gobi, T. S. Lim, B.-K. Chung, and H.-T. Chuah, "The masar project: Design and development," Progress In Electromagnetics Research, Vol. 50, 279-298, 2005.
doi:10.2528/PIER04071201

8. Mohammadpoor, M., R. S. A. Raja Abdullah, A. Ismail, and A. F. Abas, "A circular synthetic aperture radar for on-the-ground object detection," Progress In Electromagnetics Research, Vol. 122, 269-292, 2012.
doi:10.2528/PIER11082201

9. Wei, X., P. Huang, and Y.-K. Deng, "Multi-channel SPCMB-TOPS SAR for high-resolution wide-swath imaging," Progress In Electromagnetics Research, Vol. 116, 533-551, 2011.

10. Chan, Y. K., B.-K. Chung, and H.-T. Chuah, "Transmitter and receiver design of an experimental airborne synthetic aperture radar sensor," Progress In Electromagnetics Research, Vol. 49, 203-218, 2004.
doi:10.2528/PIER04031601

11. Wirth, W. D., "High-range resolution for radar by oversampling and LMS pulse compression," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 146, No. 2, 95-100, 1999.
doi:10.1049/ip-rsn:19990127

12. Gonzalez, J. E., J. M. Pardo, A. Asensio, and M. Burgos, "Digital signal generation for LPM-LPI radars," Electronics Letter, Vol. 39, 464-465, March 2003.
doi:10.1049/el:20030316

13. Chan, Y. K. and S. Y. Lim, "Synthetic aperture radar (SAR) signal generation," Progress In Electromagnetics Research B, Vol. 1, 269-290, 2008.
doi:10.2528/PIERB07102301

14. Chua, M. Y. and V. C. Koo, "FPGA-based chirp generator for high resolution UAV SAR," Progress In Electromagnetics Research, Vol. 99, 71-88, 2009.
doi:10.2528/PIER09100301

15. Koo, V. C., Y. K. Chan, V. Gobi, M. Y. Chua, C. H. Lim, C.-S. Lim, C. C. Thum, T. S. Lim, Z. Bin Ahmad, K. A. Mahmood, M. H. Bin Shahid, C. Y. Ang, W. Q. Tan, P. N. Tan, K. S. Yee, W. G. Cheaw, H. S. Boey, A. L. Choo, and B. C. Sew, "A new unmanned aerial vehicle synthetic aperture radar for environmental monitoring," Progress In Electromagnetics Research, Vol. 122, 245-268, 2012.
doi:10.2528/PIER11092604

16. Zaugg, E. C., D. L. Hudson, D. G. Long, and , "The BYU SAR: A small, student-built SAR for UAV operation," IEEE International Conference on Geoscience and Remote Sensing Symposium IGARSS, 411-414, 2006.

17. Edwards, M., D. Madsen, C. Stringham, A. Margulis, B. Wicks, and D. G. Long, "MicroASAR: A small, robust LFM-CW SAR for operation on UAVs and small aircraft," IEEE International Geoscience and Remote Sensing Symposium IGARSS, Vol. 5, V514-V517, 2008.

18. Agilent "Agilent N8241A arbitrary waveform generator synthetic instrument module --- Technical overview,", 2009.

19. Devices, A., A Technical Tutorial on Digital Signal Synthesis, 1999.